• 448查看
  • 0回复

[分享] 从近100篇综述出发,一览自动驾驶的技术发展路线!

[复制链接]


该用户从未签到

发表于 2-1-2024 21:20:25 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


2023年快要过去了,不得不说,今年的技术变更实在很快,在线高精地图、大模型、端到端自动驾驶、世界模型、Occ、Nerf这些新兴技术,慢慢走向量产的计划中,今天自动驾驶Daily就为大家盘下近百篇综述和经典论文,涉及感知、定位、融合、Occupancy、大模型、端到到、规划控制、BEV感知、数据相关等,一览自动驾驶发展路线。

所有论文出自--国内首个自动驾驶学习社区:自动驾驶之心知识星球(点我有惊喜),所有论文均可在星球内下载,更有30+学习路线,近2300人一起讨论。
端到端自动驾驶


    Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A SurveyEnd-to-end Autonomous Driving: Challenges and Frontiers
在线高精地图



    HDMapNet:基于语义分割的在线局部高精地图构建 (ICRA2022)

    VectorMapNet:基于自回归方式的端到端矢量化地图构建(ICML2023)

    MapTR : 基于固定数目点的矢量化地图构建 (ICLR2023)

    MapTRv2:一种在线矢量化高清地图构建的端到端框架

    PivotNet:基于动态枢纽点的矢量化地图构建 (ICCV2023)

    BeMapNet:基于贝塞尔曲线的矢量化地图构建 (CVPR2023)

    LATR:  无显式BEV 特征的3D车道线检测 (ICCV2023)

    TopoNet: 基于图的驾驶场景拓扑推理

    TopoMLP: 先检测后推理(拓扑推理 strong pipeline)

    LaneGAP:连续性在线车道图构建

    Neural Map Prior: 神经地图先验辅助在线建图 (CVPR2023)

    MapEX:现有地图先验显著提升在线建图性能
大模型与自动驾驶


    CLIP:Learning Transferable Visual Models From Natural Language SupervisionBLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and GenerationBLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language ModelsInstructBLIP: Towards General-purpose Vision-Language Models with Instruction TuningMiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language ModelsInstructGPT:Training language models to follow instructions with human feedbackADAPT: Action-aware Driving Caption TransformerBEVGPT:Generative Pre-trained Large Model for Autonomous Driving Prediction, Decision-Making, and PlanningDriveGPT4:Interpretable End-to-end Autonomous Driving via Large Language ModelDrive Like a Human Rethinking Autonomous Driving with Large Language ModelsDriving with LLMs: Fusing Object-Level Vector Modality for Explainable Autonomous DrivingHiLM-D: Towards High-Resolution Understanding in Multimodal Large Language Models for Autonomous DrivingLanguageMPC: Large Language Models as Decision Makers for Autonomous DrivingPlanning-oriented Autonomous DrivingWEDGE A multi-weather autonomous driving dataset built from generative vision-language models
Nerf与自动驾驶


    NeRF: Neural Radiance Field in 3D Vision, A Comprehensive ReviewNeural Volume Rendering: NeRF And BeyondMobileNeRF:移动端实时渲染,Nerf导出Mesh(CVPR2023)Co-SLAM:实时视觉定位和NeRF建图(CVPR2023)Neuralangelo:当前最好的NeRF表面重建方法(CVPR2023)MARS:首个开源自动驾驶NeRF仿真工具(CICAI2023)UniOcc:NeRF和3D占用网络(AD2023 Challenge)Unisim:自动驾驶场景的传感器模拟(CVPR2023)
Occupancy占用网络


    Grid-Centric Traffic Scenario Perception for Autonomous Driving: A Comprehensive Review
BEV感知


    Vision-Centric BEV Perception: A SurveyVision-RADAR fusion for Robotics BEV Detections: A SurveySurround-View Vision-based 3D Detection for Autonomous Driving: A SurveyDelving into the Devils of Bird’s-eye-view Perception: A Review, Evaluation and Recipe
多模态融合

针对Lidar、Radar、视觉等数据方案进行融合感知;

    A Survey on Deep Domain Adaptation for LiDAR PerceptionAutomatic Target Recognition on Synthetic Aperture Radar Imagery:A SurveyDeep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving:Datasets, Methods, and ChallengesMmWave Radar and Vision Fusion for Object Detection in Autonomous Driving:A ReviewMulti-Modal 3D Object Detection in Autonomous Driving:A SurveyMulti-modal Sensor Fusion for Auto Driving Perception:A SurveyMulti-Sensor 3D Object Box Refinement for Autonomous DrivingMulti-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving
3D检测

对基于单目图像、双目图像、点云数据、多模态数据的3D检测方法进行了梳理;

    3D Object Detection for Autonomous Driving:A Review and New Outlooks3D Object Detection from Images for Autonomous Driving A SurveyA Survey of Robust LiDAR-based 3D Object Detection Methods for autonomous drivingA Survey on 3D Object Detection Methods for Autonomous Driving ApplicationsDeep Learning for 3D Point Cloud Understanding:A SurveyMulti-Modal 3D Object Detection in Autonomous Driving:a surveySurvey and Systematization of 3D Object Detection Models and Methods
目标检测综述

主要涉及通用目标检测任务、检测任务中的数据不均衡问题、伪装目标检测、自动驾驶领域检测任务、anchor-based、anchor-free、one-stage、two-stage方案等;

    A Survey of Deep Learning for Low-Shot Object DetectionA Survey of Deep Learning-based Object DetectionCamouflaged Object Detection and Tracking:A SurveyDeep Learning for Generic Object Detection:A SurveyImbalance Problems in Object Detection:A surveyObject Detection in 20 Years:A SurveyObject Detection in Autonomous Vehicles:Status and Open ChallengesRecent Advances in Deep Learning for Object Detection
目标检测数据增强与不均衡问题

主要涉及目标检测任务中的数据增强、小目标检测、小样本学习、autoargument等工作;

    A survey on Image Data Augmentation for Deep LearningAugmentation for small object detectionBag of Freebies for Training Object Detection Neural NetworksGeneralizing from a Few Examples:A Survey on Few-ShotLearning Data Augmentation Strategies for Object Detection
分割综述

主要对实时图像分割、视频分割、实例分割、弱监督/无监督分割、点云分割等方案展开讨论;

    A Review of Point Cloud Semantic SegmentationA SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC IMAGE SEGMENTATION IN REAL-TIMEA SURVEY ON DEEP LEARNING METHODS FOR SEMANTICA Survey on Deep Learning Technique for Video SegmentationA Survey on Instance Segmentation State of the artA Survey on Label-efficient Deep Segmentation-Bridging the Gap between Weak Supervision and Dense PredictionA Technical Survey and Evaluation of Traditional Point Cloud Clustering  for LiDAR Panoptic SegmentationEvolution of Image Segmentation using Deep Convolutional Neural Network A SurveyOn Efficient Real-Time Semantic SegmentationUnsupervised Domain Adaptation for Semantic Image Segmentation-a Comprehensive Survey
多任务学习

对检测+分割+关键点+车道线联合任务训练方法进行了汇总;

    Cascade R-CNNDeep Multi-Task Learning for Joint Localization, Perception, and PredictionMask R-CNNMask Scoring R-CNNMulti-Task Multi-Sensor Fusion for 3D Object DetectionMultiTask-CenterNetOmniDetYOLOPYOLO-Pose
目标跟踪

对单目标和多目标跟踪、滤波和端到端方法进行了汇总;

    Camouflaged Object Detection and Tracking:A SurveyDeep Learning for UAV-based Object Detection and Tracking:A SurveyDeep Learning on Monocular Object Pose Detection and Tracking:A Comprehensive OverviewDetection, Recognition, and Tracking:A SurveyInfrastructure-Based Object Detection and Tracking for Cooperative Driving Automation:A SurveyRecent Advances in Embedding Methods for Multi-Object Tracking:A SurveySingle Object Tracking:A Survey of Methods, Datasets, and Evaluation MetricsVisual Object Tracking with Discriminative Filters and Siamese Networks:A Survey and Outlook
深度估计

针对单目、双目深度估计方法进行了汇总,对户外常见问题与精度损失展开了讨论;

    A Survey on Deep Learning Techniques for Stereo-based Depth EstimationDeep Learning based Monocular Depth Prediction:Datasets, Methods and ApplicationsMonocular Depth Estimation Based On Deep Learning:An OverviewMonocular Depth Estimation:A SurveyOutdoor Monocular Depth Estimation:A Research ReviewTowards Real-Time Monocular Depth Estimation for Robotics:A Survey
关键点检测

人体关键点检测方法汇总,对车辆关键点检测具有一定参考价值;

    2D Human Pose Estimation:A SurveyA survey of top-down approaches for human pose estimationEfficient Annotation and Learning for 3D Hand Pose Estimation:A SurveyRecent Advances in Monocular 2D and 3D Human Pose Estimation:A Deep Learning Perspective
Transformer综述

视觉transformer、轻量级transformer方法汇总;

    A Survey of Visual TransformersA Survey on Visual TransformerEfficient Transformers:A Survey
车道线检测

对2D/3D车道线检测方法进行了汇总,基于分类、检测、分割、曲线拟合等;
2D车道线


    A Keypoint-based Global Association Network for Lane DetectionCLRNet:Cross Layer Refinement Network for Lane DetectionEnd-to-End Deep Learning of Lane Detection and Path Prediction for Real-Time Autonomous DrivingEnd-to-end Lane Detection through Differentiable Least-Squares FittingKeep your Eyes on the Lane:Real-time Attention-guided Lane DetectionLaneNet:Real-Time Lane Detection Networks for Autonomous DrivingTowards End-to-End Lane Detection:an Instance Segmentation ApproachUltra Fast Structure-aware Deep Lane Detection
3D车道线


    3D-LaneNet+:Anchor Free Lane Detection using a Semi-Local RepresentationDeep Multi-Sensor Lane DetectionFusionLane:Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural NetworksGen-LaneNet:A Generalized and Scalable Approach for 3D Lane DetectionONCE-3DLanes:Building Monocular 3D Lane Detection3D-LaneNet:End-to-End 3D Multiple Lane Detection
SLAM综述

定位与建图方案汇总;

    A Survey on Active Simultaneous Localization and Mapping-State of the Art and New FrontiersThe Revisiting Problem in Simultaneous Localization and Mapping-A Survey on Visual Loop Closure DetectionFrom SLAM to Situational Awareness-ChallengesSimultaneous Localization and Mapping Related Datasets-A Comprehensive Survey
模型量化


    A Survey on Deep Neural Network CompressionChallenges, Overview, and SolutionsPruning and Quantization for Deep Neural Network Acceleration A Survey


快速发帖

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

GMT+8, 22-12-2024 16:01 , Processed in 0.422426 second(s), 27 queries .

Powered by Discuz! X3.5

© 2001-2013 Comsenz Inc.