中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

  • 103866查看
  • 442回复

最最全面的汽车名词解释

    [复制链接]


该用户从未签到

发表于 27-3-2007 17:11:32 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


1、什么是电子控制汽油喷射式发动机?
     汽油喷射是利用喷油器在低压下(250~350kPa)将汽油以雾状喷入进气总管、进气道或气缸内,然后和空气混合形成可燃混合气。电子控制汽油喷射系统(Electronic Fuel Injection,简称EFI,电喷系统)利用系统中的各传感器将监测到的发动机运行状态的参数(如空气流量、发动机转速、进气压力、进气温度、冷却液温度、排气中氧的含量等)转换成电信号,输入到发动机控制器(ECU,又称电控单元)中,控制器根据这些信号,计算出喷油器(喷油器的结构为电磁阀,通电时电磁阀开启喷油,通电时间的长短就决定了其喷油量的多少)的通电时间,并接通喷油器电路,使喷油器喷油,从而对喷油器的喷油时刻、喷油量进行精确的控制。ECU还可根据各传感器输送来的信号对发动机的点火提前角进行精确控制。

汽油喷射示意图
a)喷入进气道 b)多点喷射
1一汽油分配管 2一喷油器 3一气缸盖 4一节气门
5一进气管 6一发动机
  
2、电喷发动机的优点!
    与化油器式发动机相比,电控汽油喷射发动机的优点主要是:
    1)实现了对发动机混合气空燃比和点火提前角的精确控制,特别是在过渡工况下能进行瞬时精确控制,使发动机无论在什么工况下都能处在最佳状态下运转。
    2)混合气的制备是将汽油喷到进气道内获得的,从根本上解决了各缸间混合气浓度分配不均匀的问题。
    3)在进气管中不要求气流有较高的流速,因而其截面较大,且没有喉管,故进气阻力较小;同时不需对进气管中的混合气进行预热,进气温度较低。这都使得进气量有所增大。
    4)由于进气温度较低,燃烧时不易发生爆燃,故可采用较高的压缩比。
    由于以上这些优点,电控汽油喷射发动机与化油器式发动机相比。其功率可以提高5%~10%,有效燃油消耗率可降低5%~15%,有害气体的排放量可减少20%左右,可达到当前所执行的排放法规的要求。与此同时,整个供油系统都在汽油泵提供的压力下处于密封状态,因此在环境温度升高或气压较低时不会因大量汽油在油管内蒸发而产生气阻。喷油时汽油的雾化质量是由喷油压力和喷油器特性决定的,与发动机转速无关,因此在发动机冷起动时汽油仍能保持良好的雾化,发动机具有良好的冷起动性。
  
3、汽车发动机的基本参数
    缸数:汽车发动机常用缸数有3、4、5、6、8缸。排量1升以下的发动机常用3缸,1 2.5升一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。
    气缸的排列形式:一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,V形即气缸分四列错开角度布置,形体紧凑,V形发动机长度和高度尺寸小,布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用。
    气门数:国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但是结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。
    排气量:气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于(L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。
    最高输出功率:最高输出功率一般用马(PS)或千瓦(KW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高,但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率同时每分钟转速来表示(r/min),如100PS/5000r/min,即在每分钟5000转时最高输出功率100马力。
    最大扭矩:发动机从曲轴端输出的力矩,扭矩的表示方法是N.m/r/min,最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。当然,在选择的同时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。尽量做到经济、合理选配发动机。
  
4、控制系统的作用与组成!
    控制系统的作用是随发动机工况的变化,实现对混合气空燃比(浓度)、点火提前角、 发动机怠速转速的精确控制。按各组成部分不同的工作特点以及其它的一些控制(因车而 异),可分为控制器(ECU)、传感器和执行器三部分。
    控制器是控制系统的核心部件,它根据发动机各传感器送来的信号,向各执行器发出指令, 使执行器完成所需的动作,从而实现对混合气浓度、点火正时、发动机怠速转速等的各种控制。
    传感器是装在发动机各部位的信号转换装置,用来测量或检测反映发动机运行状态的各 种物理量、电量和化学量等,并将它们转换成计算机所能接受的电信号后送给ECU。主要的传感器有:空气流量计、进气管绝对压力传感器、进气温度传感器、冷却水温度传感器、转速传感器、曲轴位置传感器、节气门位置传感器、爆燃传感器、氧传感器等。另外,还有主继电器、冷起动喷油器定时开关和控制喷油器电流的电阻器等。
    执行器是根据ECU发出的控制命令来完成各种相应动作的装置。主要执行器有:电动汽油泵、电磁喷油器、怠速转速控制器、活性炭罐电磁阀、废气再循环(EGR)控制阀、点火器等。
  
5、控制器(ECU)的基本工作原理!
    控制器(Electronic Control Unit,简称ECU)是控制系统的核心机件,主要由输入电路、 模拟信号--数字信号转换器、微机、输出回路等组成。它的作用是接受各种输入信号(有传感器送来的,也有电气设备送来的),经微机的运算、处理,向执行器发出指令(接通各执行器的接地线,使其通电而工作),以实现对混合气空燃比和点火提前角的控制。发动机的工作参数,如进气压力、活塞位置、转速、进气温度、冷却液温度、节气门位置等,必须要把它们转换为电信号,控制器才能接受。传感器的作用就是监测发动机的工作参数,并将它们转换为电信号,输送给控制器,成为控制器的输入信号。
    输入ECU的传感器信号有两种:一种是模拟信号,例如:吸入空气流量、空气温度、冷却水温度等,在闭环控制中,还有来自氧传感器的余氧电压信号;另一种是数字信号,例如发动转速传感器和曲轴位置传感器的输出信号等。信号的形态不同,输入ECU的处理方法也不一样。
    从传感器来的信号,首先通过输入回路,对于数字信号可直接输入微机,而对模拟信号则必须经A/D转换器转换成数字信号之后才输入微机。微机对各种输入信号进行运算处理,确定满足发动机运转状态的燃料最佳喷射持续时间及最佳点火时刻等,并把结果通过输出回路送往喷油器、点火器等执行器。
  
6、电喷系统的主要功能!
    电喷系统的主要功能有对混合气的空燃比控制、发动机的怠速转速控制、点火提前角控制、空燃比反馈控制、汽车减速断油、故障自诊断等功能。在这些功能的基础上,还具备其它的一些功能(功能扩展),如汽车的定速行驶、发电机励磁电流、汽油蒸发排放(汽油箱净化系统)、冷却系风扇、废气再循环等。功能扩展的各项功能因车而异。
  
7、ABS
    ABS是防抱死制动(Anti-lock Brake System)的缩写。普通的刹车在紧急制动车轮完全抱死时,会因为惯性而向前打滑失去控制。ABS可以通过传感器感知车轮即将失去贴路性的临界状况,而自动启用高速点制(每秒可达数十次)来减缓该车轮的刹车压力,从而保持对车轮的控制。
    制动性能是汽车主要性能之一,它关系到行车安全性(有点废话呵,不过多少人买车有真正关注过这个,特别是一些小排量的车)。评价一辆汽车的制动性能最基本的指标是制动加速度、制动距离、制动时间及制动时方向的稳定性。
ABS(Ant-ilock Brake System)历史:
    制动力调整装置设计思想的提出在20年代末,当时有人获得了这方面的一项专利(具体是谁就不知道了)。五十年代,世界上第一台防抱死制动系统 ABS 在 1950 年问世,首先被应用在航空领域的飞机上,Knorr 公司(位于慕尼黑,该公司是世界上最大的以生产制动系统著称的公司)的防抱制动装置 (ABS) 开始用于火车。当时的纯机械式测试接收记录装置还不能适应汽车技术的较高要求,所以当时的车用ABS起的效果不是很好。经过大量的试验研究,终于得出:
  “测试车轮转数的传感器以及调节转数的控制仪是实现目标所必不可少的”
  这是车用ABS系统研制的重要理论依据!
  70年代,奔驰公司开始设想并在新闻界宣称要在轿车、载货车和大客车上使用电控式ABS,但尚无成熟的、大批生产的产品。1978年,奔驰公司首次在S级豪华型轿车上装用了ABS。1984年,开始在S级、SL级轿车和190E汽油喷射汽车上成批装备了ABS。从1992年10月至今,在德国,ABS已属各类轿车的基本装备。
  目前,最新的ABS已发展到第5代,现今的ABS还有多方面的功能,比如:
1、电子牵引系统(ETS) ,。
2、驱动防滑调整装置(ASR)
3、电子稳定程序(ESP)
4、辅助制动器
    再说ABS的分类:
按机械式、电子式分类,两者有以下不同
  1、电子式ABS是根据不同的车型所设计的,它的安装需要专业的技术,如果换装至另一辆车就必须改变它的线路设计和电瓶容量,没有通用性;机械式ABS的通用性强,只要是液压刹车装置的车辆都可使用,可以从一辆车换装到另一辆车上,而且安装只要30分钟。
  2、电子式ABS的体积大,而成品车不一定有足够的空间安装电子ABS,相比之下,机械式的ABS的体积较小,占用空间少。
  3、电子式ABS是在车轮锁死的刹那开始作用,每秒钟作用6~12次;机械式ABS在踩刹车时就开始工作,根据不同的车速,每秒钟可作用60—120次。
  4、电子式ABS的成本较高,相比之下,使用机械式ABS要经济实用些。
按控制通道分类,有以下几种:
  四通道式、特点:附着系数利用率高,制动时可以最大程度的利用每个车轮的最大附着力。但是如果汽车左右两个车轮的附着系数相差较大(如路面部分积水或结冰),会影响汽车的制动方向稳定性。广州本田即是使用四通道ABS装置。
  三通道式、特点:汽车在各种条件下制动时都具有良好的方向稳定性。三通道ABS在小轿车上被普遍采用。
  二通道式、特点:二通道式ABS难以在方向稳定性、转向控制性和制动效能各方面得到兼顾,目前采用很少
  一通道式、特点:结构简单,成本低等,在轻型载货车上广泛应用。
    制动防抱死系统的基本组成 :
  ABS通常都由车轮转速传感器、制动压力调节装置、电子控制装置和ABS警示灯组成,在不同的ABS系统中,制动压力调节装置的结构形式和工作原理往往不同,电子控制装置的内部结构和控制逻辑也可能不尽相同。
    各种ABS在以下几个方面都是相同的:
(1) ABS只是汽车的速度超过一定以后(如5km/h或8km/h),才会对制动过程中趋于抱死的车轮进行防抱死制动压力调节。
(2) 在制动过程中,只有当被控制车轮趋于抱死时,ABS才会对趋于抱死车轮的制动压力进行防抱死调节;在被控制车轮还没有趋于抱死时,制动过程与常规制动系统的制动过程完全相同
(3) ABS都具有自诊断功能,能够对系统的工作情况进行监测,一旦发现存在影响系统正常工作的故障时将自动地关闭ABS,并将ABS警示灯点亮,向驾驶发出警示信号,汽车的制动系统仍然可以像常规制动系统一样进行制动。
    ABS使用特点:
1、在低附着系数的路面上制动时,应一脚踏死制动踏板
2、能在最短的制动距离内停车
3、制动时汽车具有较高的方向稳定性
  
8、安全气囊
    克莱斯勒公司首先将它普及到各种车型上,是目前全球最热门的被动式安全装置。它安装在方向盘中间和助手席前面工具箱盖的上面,在车身遭到猛烈撞击时,它会在零点零几秒内爆发性充气并膨胀出来,阻挡你的头部和胸部。当你的车子正面发生撞击时,它可以把你头部或胸部受损的程度减少到表皮或轻伤的程度。
  
9、TCS
    牵引力控制系统(Traction Control System)的缩写,它的功能是能够侦知轮胎贴地性的极限,在轮胎即将打滑的瞬间,自动降低或切断传到该轮上的动力,使之保持循迹性。TCS是一种较为高级的电子设备,但是它的特性是约束你规规矩矩地行车,而不能把车子性能的极限发挥出来,所以不太适合跑车。
  
10、巡航控制
    这种电子系统的功能是在一定速度下启动后,可以自动操作油门、刹车和自动变速器,使车子保持既定的速度行驶。简言之,除了扭动方向盘以外的一切操作它都可以替你做,适用于公路。
  
11、英文专业名词解释集合
Quattro-全时四轮驱动系统
Tiptronic-轻触子-自动变速器
Multitronic-多极子-无级自动变速器
ABC-车身主动控制系统
DSC-车身稳定控制系统
VSC-车身稳定控制系统
TRC-牵引力控制系统
TCS-牵引力控制系统
ABS-防抱死制动系统
ASR-加速防滑系统
BAS-制动辅助系统
DCS-车身动态控制系统
EBA-紧急制动辅助系统
EBD-电子制动力分配系统
EDS-电子差速锁
ESP-电子稳定程序系统
HBA-液压刹车辅助系统
HDC-坡道控制系统
HAC-坡道起车控制系统
DAC-下坡行车辅助控制系统
A-TRC--车身主动循迹控制系统
SRS-双安全气囊
SAHR-主动性头枕
GPS-车载卫星定位导航系统
i-Drive--智能集成化操作系统
Dynamic.Drive-主动式稳定杆
R-直列多缸排列发动机
V-V型汽缸排列发动机
B-水平对置式排列多缸发动机
WA-汪克尔转子发动机
W-W型汽缸排列发动机
Fi-前置发动机(纵向)
Fq-前置发动机(横向)
Mi-中置发动机(纵向)
Mq-中置发动机(横向)
Hi-后置发动机(纵向)
Hq-后置发动机(横向)
OHV-顶置气门,侧置凸轮轴
OHC-顶置气门,上置凸轮轴
DOHC-顶置气门,双上置凸轮轴
CVTC-连续可变气门正时机构
VVT-i--气门正时机构
VVTL-i--气门正时机构
V-化油器
ES-单点喷射汽油发动机
EM-多点喷射汽油发动机
SDi-自然吸气式超柴油发动机
TDi-Turbo直喷式柴油发动机
ED-缸内直喷式汽油发动机
PD-泵喷嘴
D-柴油发动机(共轨)
DD-缸内直喷式柴油发动机
缸内直喷式发动机(分层燃烧/均质燃烧)
TA-Turbo(涡轮增压)
NOS-氧化氮气增压系统
MA-机械增压
FF-前轮驱动
FR-后轮驱动
Ap-恒时全轮驱动
Az-接通式全轮驱动
ASM 动态稳定系统
AYC主动偏行系统
ST-无级自动变速器
AS-转向臂
QL-横向摆臂
DQL-双横向摆臂
LL-纵向摆臂
SL-斜置摆臂
ML-多导向轴
SA-整体式车桥
DD-德迪戎式独立悬架后桥
VL-复合稳定杆式悬架后桥
FB-弹性支柱
DB-减震器支柱
BF-钢板弹簧悬挂
SF-螺旋弹簧悬挂
DS-扭力杆
GF-橡胶弹簧悬挂
LF-空气弹簧悬挂
HP-液气悬架阻尼
HF-液压悬架
QS-横向稳定杆
S-盘式制动
Si-内通风盘式制动
T-鼓式制动

SFI-连续多点燃油喷射发动机
FSI-直喷式汽油发动机
PCM - 动力控制模块~
EGR -废气循环再利用
BCM - 车身控制模块~
ICM - 点火控制模块~
MAP - 空气流量计
ST-无级自动变速器
FF-“前置引擎前轮驱动”
FR-“前置引擎后轮驱动”
RR-“后置引擎后轮驱动”
  
12、底盘详解
底盘简介

  大家常说底盘底盘的,到底底盘是由哪些东西组合而成的?就由大而小先介绍一下,首先最大零件叫车身,然后是悬吊系统,悬吊系统内还有避震系统,而后最重要的是轮胎。说穿了就是这些东西。
  为什么车身是底盘最大零件,因为现代车厂为了节省成本,所以已经将传统的底盘取消了,现在的悬吊系统都是直接连接于车身上,或者是透过副车架连接于车身上,这样除了省掉底盘的钱之外,也有轻量化的好处。不过缺点就是不够坚固,所以会在车身上装上一堆有的没有的加强梁,以提升车身刚性。
至于悬吊系统跟避震系统的分别,我想一般消费者都会将其搞混,一般而言,悬吊臂都是属于悬吊系统,而避震器、弹簧、防倾杆属于避震系统,不过很多时候,避震器也属于悬吊系统,这后面再谈。而不管如何,轮胎永远是最重要的零件,不过这跟车厂无关,而且消费者也可自行换装。
  一个所谓好的底盘究竟要如何,先不论个人主观的避震系统软硬,一个好的底盘刚性要高,角度控制要精准,这样车子才会遵从驾驶的控制,驾驶也才能了解车身的动态,进而达到安全有乐趣的行车。
底盘详解
    既然车身是底盘的最大零件,那车身的好坏势必完全主导了底盘好坏,一个好的车身在于拥有高刚性,所谓的高刚性就是不易变形。车辆行走在路上时,用肉眼看起来好像完全没有变形,但实际上都会因为路面的冲击而不断的变形,一但车身变形,车辆就不会听话,不要以为1~2mm的变形没什么,它会让你在高速时难以驾驭车辆,因为在高速时,你对车辆的操控也不到10mm,这就是为什么各汽车媒体常说,车身刚性对于高速行驶的稳定性有绝对性的影响。
  不过这里所指的车身刚性与安全性无关,若是真的要作,当然可以作出一台拥有极佳操控性却没安全性的车身,反之亦然。所以车身的操控刚性是不可能由撞击测试中看出来的,车身的操控刚性通常跟扭曲刚性有关,测试法为固定车身某一端点,然后对对角在线的端点施力,求得车辆的变形角度,单位为Nm/deg,这就是各车厂在车辆改款时常说的车身刚性又提升多少%的计量单位,可惜的是全世界车厂对于这个数字保密到家,使得车身刚性比较只能流于试车的主观印象,而没有科学的数据比较,再加上悬吊及避震的模糊化之后,车身刚性变成老王卖瓜自卖自夸,谎言攻讦不断的罗生门了。
  不过,不论车身刚性再高,若是直接将悬吊臂接于车身上,也会因为应力集中现象,而产生过多的局部变形,所以最好装上刚性更高的副车架,将来自悬吊臂的力量透过副车架,分散到更多的车身上以降低车身的变形量,所以高价一点的车都会不吝啬装上副车架,来降低车身所承受的压力。
  悬吊系统向来是底盘中最变化多端的地方了,因为除了刚性的考虑外,角度控制也是一大挑战,先说最简当的转向控制,有的车就能作到近乎实时的反应,有的车转动方向盘过后约一秒才有反应(AOL真的试过这种车),会有这种差别主要还是刚性问题,刚性不足的车身和悬吊会先变形吸收掉你的转向动作,然后再反弹出来,开到这种车会让人有一种不安定感,实际上是不信赖感,另外也会因为初期的转向动作被吃掉,所以驾驶人的方向盘会多转一些,导致转向后期的离心力太大导致失控,这种车开久了驾驶技术就会错误,导致容易发生低速失控的事件。
  当然除了最基础的转向控制之外,悬吊系统也控制着车轮各种的角度,有关车轮的角度很多,有外倾角、后倾角、内倾角、前束角等。外倾角决定轮胎的接地角度,理论上而言是0°,但车子过弯时会侧倾,长久下去轮胎外部磨损会比较严重,所以多设定一点负值,也可让车在过弯时稳定一点,至于设多少就看各厂经验决定,不过原厂设定不适合太保守或太暴力的人,所以根据自己的开车需求,要求轮胎行作出自己的定位角度是比较好的做法。
  后倾角是非常重要的角度,它影响着你对车辆转向时的感觉,后倾角的作用为让前车轮朝向力的方向,这听起来是蛮模糊的,所以用实例解释吧!在直行时,力量是朝前或是朝后的,所以车轮是朝前方的,在过弯时,车轮承受到过弯时的离心力,也会让车轮朝向离心力的方向,在甩尾时,前轮也会朝向甩尾的方向,于是你知道了为什么出弯的时候可放掉方向盘的原因了。不过后倾角越大,相对的驾驶人要更用力的转动方向盘,所以在前轮有驱动力的车上,后倾角通常只有1~3°,而后驱车通常有5~10°。
  既然前驱车的后倾角很小,那直进稳定就会不足,所以内倾角就出现了,内倾角的作用为让车轮朝前,以补足稳定性不足的问题,而这个内倾角所产生的直进力量为负重乘以sin(内倾角)。另外内倾角跟外倾角的夹角为包容角,这个角度不重要,重要的是该角投影到地面的长度,该长度称为轮胎摩擦半径,该半径大小影响着路面感的多寡,不过太多也会造成转向阻力。不过改变轮胎直径或轮框off set值都会改变摩擦半径,这就是为什么大家都说前轮不要乱换的原因。前束角国内多称为前束,因为以前曰系车多以mm为单位,不过现在几乎都是以角度为单位了。前束角的作用为让两侧车轮有向内的力量,藉此稳定住车身,也是为了直线稳定的需求。不过也有的车用前展角,这样在转向初期的反应性极高,不过市售车上比较少见就是了。虽然还有一些角度没讲,但了解这些大该就能理解悬吊要作的事了,说穿了就是角度控制,角度控制最首要的就是不变形的悬吊系统,毕竟一但变形原先设定的角度就没了,不过现在更进步到角度控制,让车辆的操控性更好。
常见的悬吊系统

  目前房车上常见的悬吊系统有麦花臣悬吊、拖曳臂悬吊、双A臂悬吊,当然这些都只是基本设计而已,各式各样的衍生设计可是一大堆,不过通常最简单的是麦花臣设计,其基本构造为一支下A臂,再加上避震器弹簧,而避震器就是麦花臣的上臂,所以麦花臣式的避震器要特别坚固才行,而下臂除了常见的A臂外,用两到三根连杆代替也是常见的设计。
  拖曳臂是目前房车唯一有独立和非独立的悬吊臂设计,所谓的独不独立就是看左右有没有被刚性连接物连接起来而已,而非独立拖曳臂有分滚动型和非滚动型,这两型的设计是两个极端,滚动型的设计滚动刚性最低,稳定性最好,非滚动型滚动刚性最高,灵活度最好。而滚动型因自由度太大,需要3~5根的连杆连接,非滚动型的直接装在车上就好,简简单单。不过其实滚动型的拖曳臂被归类为拖曳臂是十分不恰当的,应该归类为多连杆车轴才对,不过全世界车厂都还是说这是非独立拖曳臂。
独立式拖曳臂的变化更是惊人,有些都快跟双A臂的演化设计分不清了,最简单的拖曳臂就是一支又粗又短的拖曳臂,连接于超高刚性的车轴型副车架上,后来也出现结构强度上较强的A臂造型,不过用A臂造型本来就是不想用太好材料并达成高刚性的目的,所以有的拖曳A臂承受不了太高的扭距,结果避震器变成上臂,不过这通常不归类于麦花臣,最后这种A臂式的独立拖曳臂变成以45°连接于车身上,称作半拖曳臂,个性更像是麦花臣了。
  现在最流行的独立式拖曳臂,是拥有上下横拉杆的拖曳臂,为什么明明有上下控置臂还叫拖曳臂,因为后轮是固定于拖曳臂上,避震器也是,而那两或三根的横拉杆只负责承受车身横向力而已。不过,很多车厂都说这是后双A臂,嗯~随它去吧,反正功效跟正牌的双A臂差不多。
  双A臂悬吊就结构学而言是最坚固的悬吊,缺点就是占空间,而且越有用的A臂越占空间,所以一堆折衷设计就出现了,最常见的就是短上I臂设计,不过这种设计最大的缺点就是冲程短,角度变化量惊人,实际表现可能比麦花程还要差。
  另外有一种设计就是多连杆设计,通常两根连杆可以代替一支A臂,所以当超过四根时你就知道是用来控制角度用的,除了常见的前束角控制之外,只要厂商高兴任何角度都可以控制,甚至有上下A臂加三连杆的超疯狂设计,全车悬吊的材料成本足足高出别人2~4倍,所以有的车贵不是没有道理的。
  相信对大多数的人来说,上面那些简单的理论说明可能会不太能理解清楚,所以举一些跟大家比较切身关系的车来说明好了,就举国产中小型房车来说明好了,毕竟开这些车的人之中才有比较重视底盘的。
  就依照刚才理论篇的顺序来介绍,首先是介绍前后皆为麦花臣的FORD Tierra,它是前下A臂麦花臣、后双横拉杆加直拉杆麦花臣悬吊,基本上就是教科书里最基本麦花臣悬吊,这种设计最大的优点就是节省空间,而且后横拉杆够长,使得后轮角度变化量少,再加上悬吊都是固定于副车架上,所以非常安定。
  但是这种悬吊设计有两大弱点要克服,第一是车身、尤其是避震器塔附近的刚性,第二是悬吊组件的刚性。在高刚性车身方面,除了为了车身撞击测试的3H高刚性车身之外,在车头下方有一以68mm钢管为主体的ㄇ字型副车架,刚性非常之高,而2.0L的车款更配备了车重较重的Premacy才有的下结构加强钢梁,操控性较之前1.6L、1.8L更高一层楼。车尾除了下方的大型副车架之外,C柱下方的后障板也有特别加强处理,用以强化后避震器塔的刚性,所以Tierra底盘之扎实,国产曰系房车中无出其右者。
  在悬吊系统方面,前方的下A臂采用高张力钢制成,后方四根横向连杆长590mm,两根直向连杆长615mm,是故后悬吊无论如何激烈操驾,各种轮胎角度变化均极小,再加上较硬的避震弹簧与防倾杆设定,使得车身在遭遇0.5G的横向加速力时,车身仅侧倾2°,所以无论如何激烈操驾,轮胎均能充分接地,进而拥有稳定线性的操空感。
  在这样的设定之下,整部车变成很稳定的转向不足﹙虽然前轴重心降低后轴重心提高﹚,不要听到转向不足就倒胃口,实际上台湾有多少人会惯性甩尾的?而且Tierra的稳定是从失控前到失控后都一致,抓地力强大的后轮,让驾驶只要专注的处理前轮的动作就好了,对一般的驾驶来说,这样的车反而开得快。
  其实,这种设计在90年的欧洲车也很常见,简单、省空间、省成本,只要不偷工减料,该补强的补强,就是一部跑房车的底盘了,是「简单就是最好」的代名词。
  再来介绍多连杆车轴,喔!不对是「滚动型非独立式拖曳臂」﹙好长又不贴切的名词啊﹚,在台代表车种为NISSAN Sentra。多连杆车轴的第一定义,就是左右车轮连结于横跨车身且并不连结于车身的车轴上。第二定义就是,透过其它连杆或A臂连接于车身上,通常有左右两根的直拉杆加上一根的横拉杆,不过,横拉杆在车轴做上下运动时,会拉动车轴做轻微的左右运动。像是在NISSAN March及TOYOTA Tercel上就会发生。
  这种车轴左右移动的问题在QT上获得了完美解决,QT的横拉杆并不直接连死于车轴,而是在透过一根相反角度的横拉杆固定车轴,经过这一正一反的角度变化,车轴无论是上还是下,都不会再左右乱跑了。不过QT也因此诞生了新问题,下横拉杆太短,导致悬吊冲程太短,结果造成低速稳定舒适,激烈操驾时就会举脚弹跳,变得极不稳定,也就是说,QT悬吊的优点只存在于低速域中。
  非独立拖曳臂在欧洲是非常多人使用的后悬吊设定,很多人都说是因为便宜,但实际上应该是生产线好安装,不管如何,这种设计一直被公认为是灵活前驱小车的好设定,因为滚动刚性超大,这样讲没人听得懂,就是在侧倾时弹性系数超大的意思,这样在过弯时后轮抓地力会降低(当然举脚是主因),但一失控侧倾减小时,又立刻恢复抓地力,是一种很灵敏又能听话的悬吊。
  不过,以上的种种优点有一个绝对性的前提,就是拖曳臂刚性要够。刚性要够的第一要素就是材料够好够厚,像VW的拖曳臂钢材常常厚达5mm以上。另外,要达到高刚性,拖曳臂要短,所以冲程就会短,冲程短避震弹簧就要硬,不过避震器调得好的话,还是有一定程度的舒适性。不过这一切在TOYOTA Altis上都变了样,首先,ETA beam的钢材厚度只有2mm,当然TOYOTA也知道这样刚性一定不足,所以在ETA beam内部加了一根钢梁来补强。另外,为了使用软的避震设定,势必要加长冲程,而加长冲程就一定要加长拖曳臂,拖曳臂长了刚性就会降低。另外非独立拖曳臂为了避免左右拖曳臂的推挤现象发生,横梁都尽量靠近轴心远离轮胎,可是在Altis上,为了避开油箱,及拖曳臂太长横向刚性不够,所以横梁作在轴心跟轮胎之间,结果导致ETA beam在上下运动的同时,有时还会多出左右的衍生动作。而刚性不足的悬吊就会产生不安定感,而上一段所说到的非独拖曳臂的优点也都不会存在。不过三月以后的Altis使用的是新的ETA beam,钢性问题应该是改进了,关于这点我们会再详细追踪。
  再来讲到HONDA Civic跟MITSUBISHI Lancer,自从7代Civic将前双A臂拔掉之后,操控性立即大减,很多人都认为是麦花臣的祸,这真是冤妄麦花臣了,至少先看看FORD Tierra再说。所以Civic操控性的模糊化有其它原因,第一原因为转向臂装在避震器上,这样很多路况细节在经过避震器筒身的时候,都被吸收光了,第二原因,更大的车室空间及引擎,这两者更使下臂短小化,当然对操控不利。不过Civic的后双A臂还在,为何跟Lancer相提并论,因为Civic的后悬吊实际上是改良型的独立拖曳臂,就是那种有两三根横拉杆的拖曳臂,说真的不管怎么看,都跟Lancer及未来上市的MAZDA 6的后独立拖曳臂一样。不过这种后悬很好啊,刚性够高,轮胎角度又不会乱动,在同样的窄小空间下,用短小的双A臂不见得是好选择。
  不过为什么Lancer的操控跟四、五、六代的Civic距离那么远,因为Lancer的后悬是预留给四轮驱动版LanEVO用的,有差速器、副车架、双A臂,当这一切都没了的时候,Lancer只剩一个空虚的屁股,刚性极差,诚如前面所言,没有好车身,就没有好底盘,所以改装LanEVO的后悬吊?
FORD Tierra的悬吊系统解析
  为何我们要拿Tierra的后悬吊系统来做个更深入的说明呢?一则因为该悬吊系统的设计行之有年,但却到Tierra这一代才具有优越的操控性,值得探讨。再者最近Tierra不断地强调其优越的操控性,不但夺得去年度的原厂房车赛冠军,最近的新车款如RS Tierra 2.0更加上了许多令喜爱操控的车迷朋友砰然心动的高档配备,最重要的是那个同级车第一个使用2.0升的引擎,动力大增,加上在原本已经很坚固的前副车架下,再加上一片补强钢梁,使得路面感比起同级竞争对手而言要清楚而且直接。
  其实不管是哪种悬吊几何设计,差别只在过弯时轮胎与地面的角度变化,高刚性车身加前后高刚性副车架,再加上多连杆或双A臂的前后悬吊确实会让轮胎保有更好的接触面积,但是那个差异说真的,只有在激烈操控时,复杂的悬吊几何才具有真正的价值。在一般人的操作下,根本无法辨认拖曳臂、双A臂与麦花臣悬吊的差异。有些聪明的车厂弄懂了这个问题症结之后,便可以为了成本考虑而简化悬吊系统的几何结构。在平价的房车身上,大多数的消费者并不要求操控性,特别是在都会区车速不到60km/h的状况下,任何悬吊的差异,一般驾驶是很难感觉的出来的。
  FORD Tierra的悬吊系统在HONDA Civic失去前后双A臂悬吊的光环之后,霎时变成同级车中最具有操控性本质的设计。其实Civic的操控能力,以爱车人的角度看来,最令人怀念的时代是四代的设定,之后的车款都是为了美国大众市场而设计的!!而在一片降低底盘成本的趋势中,FORD Tierra反而较上代Liata更加强操控特性,让选择中小型房车的消费者还有个比较具有操控性的选择。
如果以原厂的设定来看,即使是最令人津津乐道,以操控见长的四代HONDA Civic,以今曰而言不见得能比Tierra更令人感受到操控的快感。台湾的路面质量实在不怎么样,但FORD Tierra的悬吊设定仍然坚持操控乐趣,为了让车主拥有驾驭的快感,在行经不良路面时的明显弹跳虽然不够舒适﹙不要忘了在0.5G时侧倾仅2°﹚,但那种安心稳定的驾驭感受,却是重视舒适取向的房车所远远不及的。一部车动辄数十万甚至百万以上,如果只是一个代步工具,那实在不足以发挥最佳的边际效应,没有驾驶乐趣的车不就跟没有兴趣的工作一样令人感到厌烦吗?
  
13、轿车的仪表板总成
    仪表板总成好似一扇窗户,随时反映出车子内部机器的运行状态,同时它又是部分设备的控制中心和被装饰的对象,是轿车车厢内最引人注目的部件。可以这样说,仪表板总成既有技术的功能又有艺术的功能,它反映出各国轿车制作工艺和风格上的差异,是整车的代表作之一。
    现代轿车的仪表板总成一般分成两部分,一部分是指方向盘前的仪表板和仪表罩及平台,另一部分是指司机旁通道上的副仪表板。其中仪表板是安装指示器的主体,集中了全车的监察仪表,通过它们揭示出发动机的转速、油压、水温和燃油的储量,灯光和发电机的工作状态,车辆的现时速度和里程积累。有些仪表还设有变速档位指示,计时钟,环境温度表,路面倾斜表和地面高度表等。按照现时流行的款式,现代轿车多数将空调,音响等设备的控制部件安装在副仪表板上,以方便驾驶者的操作,同时也显得整车布局紧凑合理。
    随着现代科学技术的发展,轿车仪表板用电子显示技术代替传统的机电式模拟仪表已成为发展的趋向。电子显示技术也就是薄型平面电子显示器技术,利用这种技术做成的汽车平面仪表板显示数字及信息,十分清晰明了,使驾驶者在开车的同时,仍然可以清楚地看到仪表数字及其它信息的变动。目前,平面仪表板主要采用真空萤光管显示、液晶显示、电致发光显示和高压驱动器集成电路等技术,具有测试反应速度快、指示准确、图形设计灵活、数字清晰、可视性能好、集成化程度高、可靠性强、功耗率低等优点。例如有些平面仪表板的速度里程表采用全数字集成电路,既提高了测试精度,又可将数字信息输入计算机内,实现了车速与里程的数据分析,使汽车具有更多的自控功能。其它如转速表、电压表、燃油表、油压表和水温表均采用线性集成电路,方便配接各类电子传感器件。
    轿车仪表板总成在车厢里处于中心的位置,非常引人注目,它的任何疵点都会令人感到浑身不舒服,因此汽车制造商是非常重视轿车仪表板总成的制作水平,从制作工艺上可以表现出制造公司的设计与工艺水平,从装饰风格上可以表现出这个国家或地区的文化传统。一种成功的轿车仪表板总成,既要融入轿车的整体,体现出它是轿车不可分割的一部分;又要体现出轿车的个性,使人看到仪表板就会想到车子的形象。正因如此,轿车仪表板总成的装饰材料是比较讲究的,一般轿车的仪表板总成是用PP(聚丙烯)材料做蒙皮,有些高级轿车的仪表板则是用真皮做蒙皮,令人感觉到一种华贵的气派。
  
14、汽车传感器
  车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。下面我们来认识一下汽车上的主要传感器。
  空气流量传感器
  空气流量传感器是将吸入的空气转换成电信号送至电控单元(ECU),作为决定喷油的基本信号之一。根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田PREVIA旅行车)、卡门涡游式空气流量传感器(丰田凌志LS400轿车)、热线式空气流量传感器(曰产千里马车用
  VG30E发动机和国产天津三峰客车TJ6481AQ4装用的沃尔沃B230F发动机)和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。
  进气压力传感器
  进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。国产奥迪100型轿车(V6发动机)、桑塔纳2000型轿车、北京切诺基(25L发动机)、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。
  节气门位置传感器
  节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ECU),从而控制不同的喷油量。它有三种型式:开关触点式节气门位置传感器(桑塔纳2000型轿车和天津三峰客车)、线性可变电阻式节气门位置传感器(北京切诺基)、综合型节气门位置传感器(国产奥迪100型V6发动机)。
  曲轴位置传感器
  也称曲轴转角传感器,是计算机控制的点火系统中最重要的传感器,其作用是检测上止点信号、曲轴转角信号和发动机转速信号,并将其输入计算机,从而使计算机能按气缸的点火顺序发出最佳点火时刻指令。曲轴位置传感器有三种型式:电磁脉冲式曲轴位置传感器、霍尔效应式曲轴位置传感器(桑塔纳2000型轿车和北京切诺基)、光电效应式曲轴位置传感器。曲轴位置传感器型式不同,其控制方式和控制精度也不同。曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端,也有的安装于分电器(桑塔纳2000型轿车)。
  爆震传感器
  爆震传感器安装在发动机的缸体上,随时监测发动机的爆震情况。目前采用的有共振型和非共振型两大类。
  
15、“欧I”和“欧II”标准
    近年来,汽车的排放是否符合排放标准已成为人们关心的热点话题之一。自2001年9月1曰起,国家禁止生产、销售化油器轿车,更使这个热点话题升温。在涉及排放标准时,在有关规定和文章中经常出现“欧I”、“欧II”标准的提法,那么何为“欧I”、“欧II”标准呢?
据有关资料介绍,“欧I”、“欧II”是欧洲I号标准和欧洲II号标准的简称。欧洲标准属于一个专业的技术范畴,它是欧洲经济共同体委员会91/441/EEC制订的统一指令,涵盖了不同类型汽车排放的有关规定。
    现以设计乘员数不超过6人(含驾驶员)、总质量不超过2.5吨的汽车为例,在1999年1月1曰到2003—12月31曰期间,必须达到的排放极限值为:一氧化碳不超过3.16克/公里,碳氢化合物不超过1.13克/公里;另外,柴油车排放的颗粒物不超过0.18克/公里,耐久性为5万公里。这就是欧洲I号标准中的有关规定。在2004年1月1曰以后,要求这类汽油车排放的一氧化碳不超过2.2克/公里,碳氢化合物不超过0.5克/公里;柴油车排放的一氧化碳不超过1.0克/公里,碳氢化合物不超过0.7克/公里,颗粒物不超过0.08克/公里。这就是欧洲II号标准的有关规定。
  
16、典型轿车构造示意图

  
17、汽车基本供油系统示意图:

  
18、仪表灯连接示意图:

  
19、空气动力学
  空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。
  另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。
对付浮升力的方法
  对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT-R还使用这样的装置。
  另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。至于车尾部分,其课题主要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。
  如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为ATTECHED或者LAMINAR(即所谓的流线型)。而水滴的形状就是现今我们所知的最为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可以达到很好的LAMIAR的效果。常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。
  FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。
  其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。当气流流过这个机翼形状的物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。随着速度的升高,下压力的损失会逐渐加大。虽然车体上下方的压力差有可能只有一点点,但是由于车体上下的面积较大,微小的压力差便会造成明显的抓着力分别。一般而言,车尾更容易受到浮升力的影响,而车头部分也会因此造成操控稳定性的问题。
  传统的房车、旅行车和掀背车这类后挡风玻璃较垂直的汽车,浮升力对它们的影响会较为轻微,因为气流经过垂直的后窗后就已经散落,形成所谓的乱流效果,浮升力因此下降,但是这些乱流也正是气流拉力的来源。有些研究指出像GOLF之类的两厢式掀背车,如车顶和尾窗的夹角在30度之内,它所造成的气流拉力会较超过30度的设计更低。所以有些人就会想当然的认为只要将后窗的和车顶的夹角控制在28至32度之间,就能同时兼顾浮升力和空气拉力的问题。其实问题并没有那么简单,在这个角度范围里气流既不能紧贴在车体上也不足以造成乱流,如此一来将很难预计空气的流动情况。因为汽车在行驶时并非在一个水平面上行驶,随着悬挂系统的上下运动,其实汽车的离地距离是一个变量,而气流在流过车体上下所造成的压力差也会随时改变,同时在车辆过弯时车尾左右的气流动态也会对车尾的气流情况造成影响。当尾窗与车顶的夹角介于28至32度时,车尾将介于稳定和不稳定的边缘,这其实非常危险的。举个例子,AUDI TT在推出时曾经发生高速翻车的问题,当时的事故调查报告指出AUDI TT的后轴在高速时浮升力过高,造成后轮抓着力太弱。而TT在设计时以风格作为首要前提,在空气动力学上有所牺牲。后窗与车尾的弧度就介于以上那个尴尬的角度之间。车厂在设计掀背车时宁愿将车尾设计的平直一点,一来可以增加车内的空间,二来也克服了空气动力学上的不足。
尾翼的基本设计
  尾翼和扰流器的诞生正是要解决气流和浮升力的问题。我们见到过的尾翼可谓五花八门、千奇百怪。不过它们却有着相同的特点:表面狭窄、水平面离开车身安装(如果尾翼紧贴在车身安装,如果它不仅仅起到装饰作用,便只有扰流器般的作用,这两者是不同的。)尾翼的主要作用是增加下压力,所以尾翼的外形必须像倒置的机翼才行,这样的设计会使流经尾翼下端的气流的速度较流经尾翼上端的来得高,从而产生下压力。还有一种产生下压力的方法是将尾翼前端微微向下倾斜,虽然这种设计会比水平式的尾翼产生更大的空气拉力,但是在调节下压力大小的方面却较有弹性。
WING和SPOILER的分别
  尾翼和车尾扰流器的分别是后者与车尾连为一体,或者干脆就是车身整体设计的一部分。车尾扰流器其实也可以用来制造下压力,但是常见的功能扔是减少浮升力和气流拉力。掀背车的尾扰流器集结了大量的空气于扰流器的前方,目的是分隔车尾的气流,从而降低浮升力。后扰流器也可以令气流更顺畅的流经车尾,避免气流长时间的徘徊或紧贴在车尾上,如此一来便可以减少空气拉力,同时也可以减低导致浮升力的车底气压。
  所以,有很多车书喜欢统称车尾上的凸出物为尾翼是很不专业的行为,比如普通版的911那个可以自动升降的东西该被称为扰流器,而GT2上的那个才是货真价实的尾翼。一般来说,欧洲的车厂比较注重汽车的美学设计,同时也很在意SPORTS SEDAN和RACING EDITION之间的分别。所以,欧洲的车厂比较忌用尾翼,而曰本的车厂则将尾翼作为卖点推给顾客,从这种分别中也可以轻易的体会出不同国家造车哲学的不同。
尾翼和扰流器的简史
  早在上世纪30年代,各大车厂已经开始致力于降低气流拉力,而对于浮升力的研究,各车厂大致要到60年代才开始关注。FERRAR的赛车手RICHIE GINTHER于1961年发明了能产生下压力的车尾扰流器,他也因此闻名于世。随后的FERRARI战车也都使用此项设计。而第一部使用前扰流器(俗称气霸)的汽车应该是大名鼎鼎的FORD GT40。这部车在超越时速300KM/H时所产生的浮升力令其成为一部根本无法驾驭的汽车,据说在加装了前气霸之后,GT40在达到极速时前轮的下压力由原来的310磅激增至604磅!!!至于第一部使用尾翼的汽车我没有准确的资料,不过据说时道奇于60年代末生产的CHARGER DAYTONA PLYMOUTH SUPERBIRD。
  在欧洲车厂方面,保时捷可以算首家兼顾扰流器的功能和美学设计的车厂。1975的911 TUBRO的一体式的气霸和鲸鱼尾式的扰流器大副降低了浮升力的产生,其效用高达90%。于是在70年代末,气霸和扰流器更成为保时捷的标志。当时有很多以高性能作为卖点的车厂也跟随保时捷的步伐以气霸和扰流器作为卖点。(说到这里,我到想起了一些题外话。其实车厂都要经过一个发展阶段才能走向成熟,其实曰本车与欧洲车的差距就体现在曰本车其实在走欧洲车曾经走过的一条道路,这条路每个车厂都必须经历。如果以后中国真正的拥有自己的汽车工业的话,那么中国的车厂也必须走这条道路。一般我认为欧洲车厂的空气动力学水平要较曰本车厂来的高一点,就拿对空气动力学要求很高的F1赛事来说,所有空气动力学高手都是欧洲人,而这些欧洲人也无一例外的供职于欧洲车厂,英美车队在空气动力学方面的研究在它这几年来几乎没有进步,从这一点上面就可以看出欧洲车厂于曰本车厂之间的差距。不过,这些差距是由时间造成的,我想技术上的差距相对比较容易弥补。而文化背景的不同才容易造成真正的差异,而这种差异如果产生不良性的发展,曰本车厂就真正的危险了。)
  现在气霸和扰流器已经非常非常的普通了,几乎时速可以达到百余公里的汽车都使用这些东西。其实如果你的车速并不高,这些东西并不起作用。当车速介于60到80之间时,气流的拉力根本高不过车轮的运动阻力,如果要感受尾翼和扰流器在浮升力和下压力方面的明显作用,时速必须高于160KM。其中的原因是因为气流的动力往往是车速的二次方,一部汽车从130KM/H加速至260KM/H,浮升力和空气拉力将会有四倍的增加。
  同时,所有汽车所有的气霸,在降低气流拉力方面都具有一定的作用。一般来说可以减少5~10%的整体气流拉力。另一方面,气霸也有助于冷却引擎,亦方便了雾灯的安装。不过仍然有为数不少的车厂认为尾翼和扰流器是为了美观而设的。不过总体来说,这些空气动力部件都具有一定的实际作用,以上代凌志SC系列来说,加装原厂车尾扰流器之后,汽车的Cd数值(气流拉力)由原来的0.32降至0.31。但是FORD ADVANCED DESIGN STUDIO的设计师GRANT GARRISON曾经说过:如果尾翼和扰流器不是那么受欢迎,我们是不会加在车身上的,但是我们可以用其它方法来把车辆设计得具有同样的空气动力学效果。持相同观点的还有大名鼎鼎的FERRARI,众所周知FERRARI为了迁就车身设计的美感是很忌讳在车身上使用尾翼的,而即使以快跑作为最高目的的ENZO FERRARI也使用的是可升降的尾扰流板,其原因是FERRARI的主席认为一部静止的FERRARI不需要任何扰流器!!!
对Cd值的一点解释
  最后值得一提的倒是普遍存在的对Cd值的一些误解。在许多车厂的产品介绍书中,常常会提及新车的风阻系数降低至多少多少Cd,而Cd所指的并不简单是指我们一般所说的空气阻力,而是流气拉力系数(DRAG COEFFICIENT),一般而言气流在车尾造成的拉力,数值越低,表示车尾气流处理的越流畅,该部分的浮升力亦会越小,相对而言,车辆行走时的阻力会低一点,后轮的下压力也会好一点。说到这里我们就应该明白,加装尾翼并不一定会增加Cd值!如果加装尾翼和尾扰流器后,车辆尾部气流通过的流畅度增高,那么这辆车的Cd值反而应该降低。汽车设计的空气动力学问题并不止于车尾,其实车头的长度和宽度也会影响一部汽车的总拉力数值。比如前纵置引擎的中心点要比前轴的中心点更前,车头就容易造得很长,而如果加阔前轮距来横置摆放引擎,车头部分就会随着加阔,以上两种情况都会影响到整体的气流拉力(CdA)。虽然有可能一辆车的Cd造得很低,但是同样难以弥补车头部分增加的长度和宽度所带来的整体气流拉力数值的上升,举个例子来说,一部汽车的风阻系数由原来的Cd0.40下降至Cd0.38,但是车头的宽度却增加了75MM,这时它的CdA数值约会上升5%,这样一来等于完全抵消了Cd下降的效果。(比如新款的ACCORD,虽然风阻系数达到了惊人的Cd0.25,可是因为车体全面比上一代要加大许多,所有在高速时的稳定性表现,我个人估计不会有大幅的攀升,如果这方面的表现的确有所改进,也首先应该归功于轴距的加长和悬挂设定的改进,空气动力学的成就反而是次要的。因为民用车的空气动力学表现必须兼顾降低风噪和燃油经济性,所有在设计时必然会对汽车的下压力作出一定的牺牲。)
  因此,在大家谈论Cd时,不应该认为Cd代表了一部汽车的整体空气动力表现,更不能轻易的认为随便加装一只尾翼或者巨型扰流器就必然可以获得更好的空气动力学表现!其实充其量它只不过改善了空气动力学中某个部分的表现而已。
  最后,要说的是对改装空气动力学部件的一点看法。基本上,主流车厂在空气动力学方面的研究在这5至6年里得到了迅猛的发展(原因很简单,内燃机的改进在近十年步伐明显放缓,要想改善汽车的动力表现只有从改善空气动力学和提高动力传输效率两方面入手)。新的量产车在空气动力学方面的表现也越来越好,这也就是说新车的空气动力学设计越来越严谨,随意的改动更加容易破坏汽车原来的空气动力学表现,而非改善!操控性首先讲究的是总体的平衡,所有单单改装BODY KIT或者单改其它的空气动力部件很有可能达到和愿意背道而驰的效果。所有我认为,如果要改就一件式一起改,而且不要轻易的加装车底的扰流板。第一,车体的扰流板较容易损坏;第二车底的扰流板在正常的车速下根本不能改善汽车的空气动力表现。

20、发动机基本参数详解:
    汽车发动机的基本参数包括发动机缸数,气缸的排列形式,气门,排量,最高输出功率,最大扭矩。
    缸数:汽车发动机常用缸数有3、4、5、6、8缸。排量1升以下的发动机常用3缸,1 2.5升一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。
    气缸的排列形式:一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,V形即气缸分四列错开角度布置,形体紧凑,V形发动机长度和高度尺寸小,布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用。
    气门数:国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但是结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。
    排气量:气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于(L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。
    最高输出功率:最高输出功率一般用马(PS)或千瓦(KW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高,但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率同时每分钟转速来表示(r/min),如100PS/5000r/min,即在每分钟5000转时最高输出功率100马力。
    最大扭矩:发动机从曲轴端输出的力矩,扭矩的表示方法是N.m/r/min,最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。当然,在选择的同时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。尽量做到经济、合理选配发动机。
  
21、免维护蓄电池
    蓄电池是汽车上的重要部件,它的功能是提供汽车启动的电能和调整发电机输出和负荷之间不平衡的状态。当发动机不工作或转速较低时,蓄电池向用电设备供电;当用电设备的用电功率大于发电机输出功率时,蓄电池与发电机携手并联向用电设备供电;当用电设备的用电功率小于发电机输出功率时,发电机向蓄电池和用电设备供电。供电系统是汽车电器中最关键的环节,蓄电池是其中重要的部件之一,它的质量好坏直接影响了汽车的运行。现在的汽车蓄电池都是12伏特铅酸蓄电池,随着现代工业技术的发展,汽车蓄电池也发生了很大的变化,目前一些轿车上使用的新型免维护蓄电池,就是近十年来迅速发展和应用的一种新技术。
    铅酸蓄电池是由正负极板、隔板、壳体、电解液和接线桩头等组成,其放电的化学反应是依靠正极板活性物质(二氧化铅和铅)和负极板活性物质(海绵状纯铅)在电解液(稀硫酸溶液)的作用下进行,其中极板的栅架,传统蓄电池用铅锑合金制造,免维护蓄电池是用铅钙合金制造,前者用锑,后者用钙,这是两者的根本区别点。不同的材料就会产生不同的现象:传统蓄电池在使用过程中会发生减液现象,这是因为栅架上的锑会污染负极板上的海绵状纯铅,减弱了完全充电后蓄电池内的反电动势,造成水的过度分解,大量氧气和氢气分别从正负极板上逸出,使电解液减少。用钙代替锑,就可以改变完全充电后的蓄电池的反电动势,减少过充电流,液体气化速度减低,从而减低了电解液的损失。
    由于免维护蓄电池采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线和车身腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点,受到用车人士的欢迎。
    有些轿车上的免维护蓄电池还装有温度补偿型比重计,可以指示蓄电池的存放电状态和电解液液位的高度。当比重计的指示眼呈绿色时,表明充电已足,蓄电池正常;当指示眼绿点很少或为黑色,表明蓄电池需要充电;当指示眼显示淡黄色,表明蓄电池内部有故障,需要修理或进行更换。

22、汽车传动系概括:
汽车传动系按照结构和传动介质分,其型式有机械式、液力机械式、静液式(容积液压式)、电力式等。它们的基本功能就是将发动机发出的动力传给驱动车轮。它的首要任务就是与汽车发动机协同工作,以保证汽车能在不同使用条件下正常行驶,并具有良好的动力性和燃油经济性,为此,汽车传动系都具备以下的功能:
??1、减速和变速
??我们知道,只有当作用在驱动轮上的牵引力足以克服外界对汽车的阻力时,汽车才能起步和正常行驶。由实验得知,即使汽车在平直得沥青路面上以低速匀速行驶,也需要克服数值约相当于1.5%汽车总重力得滚动阻力。以东风EQ1090E型汽车为例,该车满载总质量为9290kg(总重力为91135N),其最小滚动阻力约为1367N。若要求满载汽车能在坡度为30%的道路上匀速上坡行驶,则所要克服的上坡阻力即达2734N。东风EQ1090E型汽车的6100Q-1发动机所能产生的最大扭距为353Nm(1200-1400rpm)。假设将这以扭距直接如数传给驱动轮,则驱动轮可能得到的牵引力仅为784N。显然,在此情况下,汽车不仅不能爬坡,即使在平直的良好路面上也不可能匀速行驶。
??另一方面,6100Q-1发动机在发出最大功率99.3kW时的曲轴转速为3000rpm。假如将发动机与驱动轮直接连接,则对应这一曲轴转速的汽车速度将达510km/h。这样高的车速既不实用,也不可能实现(因为相应的牵引力太小,汽车根本无法启动)。
??为解决这些矛盾,必须使传动系具有减速增距作用(简称减速作用),亦即使驱动轮的转速降低为发动机转速的若干分之一,相应地驱动轮所得到的扭距则增大到发动机扭距的若干倍。
??汽车的使用条件,诸如汽车的实际装载量、道路坡度、路面状况,以及道路宽度和曲率、交通情况所允许的车速等等,都在很大范围内不断变化。这就要求汽车牵引力和速度也有相当大的变化范围。对活塞式内燃机来说,在其整个转速范围内,扭距的变化范围不大,而功率的及燃油消耗率的变化却很大,因而保证发动机功率较大而燃油消耗率较低的曲轴转速范围,即有利转速范围很窄。为了使发动机能保持在有利转速范围内工作,而汽车牵引力和速度有能在足够大的范围内变化,应当使传动系传动比(所谓传动比就是驱动轮扭距与发动机扭距之比以及发动机转速与驱动轮转速之比)能在最大值与最小值之间变化,即传动系应起变速作用。
??2、实现汽车倒驶
??
??汽车在某些情况下,需要倒向行驶。然而,内燃机是不能反向旋转的,故与内燃机共同工作的传动系必须保证在发动机选择方向不变的情况下,能够使驱动轮反向旋转。一般结构措施是在变速器内加设倒档(具有中间齿轮的减速齿轮副)。
??3、必要时中断传动
??内燃机只能在无负荷情况下起动,而且启动后的转速必须保持在最低稳定转速上,否则即可能熄火,所以在汽车起步之前,必须将发动机与驱动轮之间的传动路线切断,以便起动发动机。发动机进入正常怠速运转后,再逐渐地恢复传动系的传动能力,即从零开始逐渐对发动机曲轴加载,同时加大节气门开度,以保证发动机不致熄灭,且汽车能平稳起步。刚学驾驶车的朋友应该有比较深的认识吧,起动时忘踩离合或者离合放得太快就会“死火”。此外,在变换传动系传动比档位(换档)以及对汽车进行制动之前,都有必要暂时中断动力传递。为此,在发动机与变速器之间,可装设一个依靠摩擦来传动,且其主动和从动部分可在驾驶员操纵下彻底分离,随后再柔和接合的机构——离合器。
??同时,再汽车长时间停驻时,以及在发动机不停止运转情况下,使汽车暂时停驻,传动系应能较长时间中断传动状态。为此,变速器应设有空挡,即所有各档齿轮都能自动保持在脱离传动位置的档位。
??4、差速作用
??当汽车转弯行驶时,左右车轮在同一时间内滚过的距离不同,如果两侧驱动轮仅用以根刚性轴驱动,则二者角速度必然相同,因而在汽车转弯时必然产生车轮相对于地面滑动的现象。这将使转向困难,汽车的动力消耗增加,传动系内某些零件和轮胎加速磨损。所以,我们需要在驱动桥内装置具有差速作用的部件——差速器,使左右两驱动轮可以以不同的角速度旋转。
  
23、悬架系统
  舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。
  汽车悬架包括弹性元件,减振器和传力装置等三部分,这三部分分别起缓冲,减振和力的传递作用。从轿车上来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小,质量小,结构简单,无需润滑的优点,但由于本身没有摩擦而没有减振作用。减振器指液力减振器或压缩空气减振器,是为了加速衰减车身的振动,它是悬架机构中最精密和复杂的机械件。传力装置是指车架的上下摆臂等叉形刚架、转向节等元件,用来传递纵向力,侧向力及力矩,并保证车轮相对于车架(或车身)有确定的相对运动规律。
  汽车悬架的形式分为非独立悬架和独立悬架两种:
  非独立悬架的车轮装在一根整体车轴的两端,当一边车轮跳动时,影响另一侧车轮也作相应的跳动,使整个车身振动或倾斜,汽车的平稳性和舒适性较差,但由于构造较简单,承载力大,目前仍有部分轿车的后悬架采用这种型式。
  独立悬架的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架(或车身)下面,当一边车轮发生跳动时,另一边车轮不受波及,汽车的平稳性和舒适性好。但这种悬架构造较复杂,承载力小。现代轿车前后悬架大都采用了独立悬架,并已成为一种发展趋势。
  独立悬架的结构可分有烛式、麦弗逊式、连杆式等多种,其中烛式和麦克弗逊式形状相似,两者都是将螺旋弹簧与减振器组合在一起,但因结构不同又有重大区别。烛式采用车轮沿主销轴方向移动的悬架形式,形状似烛形而得名。特点是主销位置和前轮定位角不随车轮的上下跳动而变化,有利于汽车的操纵性和稳定性。麦克弗逊式是绞结式滑柱与下横臂组成的悬架形式,减振器可兼做转向主销,转向节可以绕着它转动。特点是主销位置和前轮定位角随车轮的上下跳动而变化,这点与烛式悬架正好相反。这种悬架构造简单,布置紧凑,前轮定位变化小,具有良好的行驶稳定性。所以,目前轿车使用最多的独立悬架是麦弗逊式悬架。
  关于麦弗逊悬架,车坛历史上还有这么一段记载。麦弗逊(Mcpherson)是美国伊利诺斯州人,1891年生。大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入了通用汽车公司的工程中心。30年代,通用的雪佛兰分部想设计一种真正的小型汽车,总设计师就是麦弗逊。他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬架。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬架方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。麦弗逊悬架由于构造简单,性能优越的缘故,被行家誉为经典的设计。
  现代轿车的悬架都有减振器。当轿车在不平坦的道路上行驶,车身会发生振动,减振器能迅速衰减车身的振动,利用本身的油液流动的阻力来消耗振动的能量。当车架与车轴相对运动时,减振器内的油液会通过一些窄小的孔、缝等通道反复地从一个腔室流向另一个腔室,这时孔壁与油液间的摩擦和油液内的分子间的摩擦形成了对车身振动的阻力,这种阻力工程上称为阻尼力。阻尼力会将车身的振动能转化为热能,并被油液和壳体所吸收。人们为了更好地实现轿车的行驶平稳性和安全性,将阻尼系数不固定在某一数值上,而是能随轿车运行的状态而变化,使悬架性能总是处在最优的状态附近。因此,有些轿车的减振器是可调式的,将阻尼分成两级或三级,根据传感器信号自动选择所需要的阻尼级。
  为了提高轿车的舒适性,现代轿车悬架的垂直刚度值设计得较低,用通俗话来讲就是很“软”,这样虽然乘坐舒适了,但轿车在转弯时,由于离心力的作用会产生较大的车身倾斜角,直接影响到操纵的稳定性。为了改善这一状态,许多轿车的前后悬架增添横向稳定杆,当车身倾斜时,两侧悬架变形不等,横向稳定杆就会起到类似杠杆作用,使左右两边的弹簧变形接近一致,以减少车身的倾斜和振动,提高轿车行驶的稳定性。
  从外表上看似简单的悬架,包含着多种力的合作,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。
  
24、差速器:
  汽车发动机的动力经离合器、变速器、传动轴,最后传送到驱动桥再左右分配给半轴驱动车轮,在这条动力传送途径上,驱动桥是最后一个总成,它的主要部件是减速器和差速器。减速器的作用就是减速增矩,这个功能完全靠齿轮与齿轮之间的啮合完成,比较容易理解。而差速器就比较难理解,什么叫差速器,为什么要“差速”?
  汽车差速器是驱动轿的主件。它的作用就是在向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
  汽车在拐弯时车轮的轨线是圆弧,如果汽车向左转弯,圆弧的中心点在左侧,在相同的时间里,右侧轮子走的弧线比左侧轮子长,为了平衡这个差异,就要左边轮子慢一点,右边轮子快一点,用不同的转速来弥补距离的差异。
  如果后轮轴做成一个整体,就无法做到两侧轮子的转速差异,也就是做不到自动调整。为了解决这个问题,早在一百年前,法国雷诺汽车公司的创始人路易斯.雷诺就设计出了差速器这个玩意。
  普通差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。差速器的设计要求满足:(左半轴转速)+(右半轴转速)=2(行星轮架转速)。当汽车直行时,左、右车轮与行星轮架三者的转速相等处于平衡状态,而在汽车转弯时三者平衡状态被破坏,导致内侧轮转速减小,外侧轮转速增加。
  这种调整是自动的,这里涉及到“最小能耗原理”,也就是地球上所有物体都倾向于耗能最小的状态。例如把一粒豆子放进一个碗内,豆子会自动停留在碗底而绝不会停留在碗壁,因为碗底是能量最低的位置(位能),它自动选择静止(动能最小)而不会不断运动。同样的道理,车轮在转弯时也会自动趋向能耗最低的状态,自动地按照转弯半径调整左右轮的转速。
  当转弯时,由于外侧轮有滑拖的现象,内侧轮有滑转的现象,两个驱动轮此时就会产生两个方向相反的附加力,由于“最小能耗原理”,必然导致两边车轮的转速不同,从而破坏了三者的平衡关系,并通过半轴反映到半轴齿轮上,迫使行星齿轮产生自转,使外侧半轴转速加快,内侧半轴转速减慢,从而实现两边车轮转速的差异。
  
25、万向节:
  汽车上有一个很重要的部件,称为万向节。万向节与传动轴组合,称为万向节传动装置。在前置发动机后轮驱动的车辆上,万向节传动装置安装在变速器输出轴与驱动桥主减速器输入轴之间;而前置发动机前轮驱动的车辆省略了传动轴,万向节安装在既负责驱动又负责转向的前桥半轴与车轮之间。
  那么,万向节在汽车上起到什么作用呢?
  汽车是一个运动的物体。在后驱动汽车上,发动机、离合器与变速器作为一个整体安装在车架上,而驱动桥通过弹性悬挂与车架连接,两者之间有一个距离,需要进行连接。汽车运行中路面不平产生跳动,负荷变化或者两个总成安装位置差异,都会使得变速器输出轴与驱动桥主减速器输入轴之间的夹角和距离发生变化,因此要用一个“以变应变”的装置来解决这一个问题,因此就有了万向节这个东西。
  同样的道理,越野车变速器与分动器之间,前驱动的可转向驱动桥与半轴之间,都需要这个万向节做“关节”。万向节的结构和作用有点象人体四肢上的关节,它允许被连接的零件之间的夹角变化。但它与肢体关节的活动形式又有所不同,它仅允许夹角在一定范围内变化。
  万向节有十字轴式刚性万向节,准等速万向节(双联轴式和三销轴式),等速万向节(球叉式和球笼式),扰性万向节。
  目前后驱动汽车上应用最广的一种普通万向节由万向节叉、十字轴等基本零件构成。十字轴装配在万向节叉上做连接,十字轴的轴头上装有滚针轴承,当轴头接入万向节叉时,十字轴与万向节叉之间就可以有相对旋转,也就产生了多角度变化。万向节叉上的花键连接又可以做小许的轴向移动,这样就适应了夹角和距离同时变化的需要。
  单个的万向节不能使输出轴与轴入轴的瞬时角速度相等,容易造成振动,加剧机件的损坏,产生很大的噪音。因此,后驱动汽车的万向节传动形式都采用双万向节,就是传动轴两端各有一个万向节,其作用是使传动轴两端的夹角相等,保证输出轴与轴入轴的瞬时角速度始终相等。
  为了满足动力传递、转向和汽车运行时所产生的上下跳动所造成的角度变化,前驱动汽车的驱动桥,半轴与轮轴之间也常用万向节相连。由于受轴向尺寸的限制,要求偏角又比较大,普通万向节难以胜任,所以广泛采用各式各样的等速万向节。在一般前驱动汽车上,每个半轴用两个等速万向节,靠近变速驱动桥的万向节是半轴内侧万向节,靠近车轴的是半轴外侧万向节。在各种等速万向节中,常见是球笼式万向节,它用六个钢球传力,主动轴与从动轴在任何交角的情况下,钢球都位于两园的交点上,即位于两轴交角的平分面上,从而保证主、从动轴等角速度传动。

26、同步器:
  由于变速器输入轴与输出轴以各自的速度旋转,变换档位时合存在一个"同步"问题。两个旋转速度不一样齿轮强行啮合必然会发生冲击碰撞,损坏齿轮。因此,旧式变速器的换档要采用"两脚离合"的方式,升档在空档位置停留片刻,减档要在空档位置加油门,以减少齿轮的转速差。但这个操作比较复杂,难以掌握精确。因此设计师创造出"同步器",通过同步器使将要啮合的齿轮达到一致的转速而顺利啮合。
  同步器有常压式和惯性式。
  目前全部同步式变速器上采用的是惯性同步器,它主要由接合套、同步锁环等组成,它的特点是依靠摩擦作用实现同步。
  接合套、同步锁环和待接合齿轮的齿圈上均有倒角(锁止角),同步锁环的内锥面与待接合齿轮齿圈外锥面接触产生摩擦。锁止角与锥面在设计时已作了适当选择,锥面摩擦使得待啮合的齿套与齿圈迅速同步,同时又会产生一种锁止作用,防止齿轮在同步前进行啮合。
  当同步锁环内锥面与待接合齿轮齿圈外锥面接触后,在摩擦力矩的作用下齿轮转速迅速降低(或升高)到与同步锁环转速相等,两者同步旋转,齿轮相对于同步锁环的转速为零,因而惯性力矩也同时消失,这时在作用力的推动下,接合套不受阻碍地与同步锁环齿圈接合,并进一步与待接合齿轮的齿圈接合而完成换档过程。
  
27、粘性偶合器:
  4轮驱动已经不是一个陌生的名词,它早已超越越野车的范围,在休闲车和轿跑车上大行其道。现在的4轮驱动小汽车多采用常啮合式四轮驱动,可以自动转换驱动形式。它有一个起关键作用的部件叫做粘性偶合器,又称为粘性联轴器。
  粘性偶合器利用液体的粘性或油膜的剪切作用来传递动力。根据牛顿内摩擦定律,假设在平行放置的两块平板之间充满粘性液体,当下板固定上板平行移动时,则板间液体受到剪切,如果液体粘度、液体厚度及平板移动速度、结构参数选取合理,就可以设计出能传递很大功率的液体粘性传动装置,例如汽车粘性偶合器。

  流体没有固定的形状,如何能传递动力?举一个曰常现象为例来说明。融化的口香糖是黏度很高的流体。如果把它黏附在两片木版之间,左手向上拉动左侧木版,右手向下拉动右侧木版,你会感到很大的阻力。两块木版并没有互相接触,它们是靠口香糖的黏度传递动力的。

  粘性偶合器是一个密封的多板片偶合器,它是由壳体、外板、内板、内轴等主要零件构成,其中壳体和外板为主动部分,在动力输入一端;内板和内轴为从动部分,在动力输出一端;内、外板间隔排列在一起,它们之间的间隙很小,黏度很高的硅酮油液充入这些间隙中。当输入端与输出端转速差较少时,硅酮油和内、外板几乎以同一转速旋转,这时油液内部不会产生剪切粘性阻力,偶合器不传递动力。当输入端与输出端转速差较大时,接近内板的油液与接近外板的油液之间有较大的转速差,这时就会产生剪切粘性阻力,迫使输入端与输出端之间减少转速差,偶合器传递动力。
  在4轮驱动汽车差速器上装置了粘性偶合器。当汽车在正常行驶时,各轮没有转速差,粘性偶合器不工作。如果汽车前轮(驱动轮)出现打滑空转,前后轮出现很大的转速差,粘性偶合器开始工作并将动力分配给后轮。这样,根据路面状态,车辆能自动地调节前后轮的动力分配。

28、氙气灯:
■氙灯有如下几个特点:
1、 色温高,光色发蓝。看起来比较帅。K数是k数的标志,一般的卤素灯色温都在3000以下。氙灯一般是4500k起步。7000k很普通。前两天看到一哥们说有12000k的氙灯,疯了,肯定蓝的发紫了。K数高,一般更接近曰光更容易接受,但是我认为色温高真正的好处,仅仅是好看而已,其他的作用不大。
2、 亮度高,注意色温和亮度是根本不同的概念,氙灯亮不是因为色温高,而是因为亮度高。亮度的单位是流明,氙灯的流明数一般是普通卤素灯的3倍。
3、 其他的象能耗小,寿命长跟我们的关系不大。

■装氙灯前必须了解的几个问题:
1、 氙灯的分类,氙灯按灯泡形式一共分六种。带透镜的远光灯、带透镜的近光灯(以上两种灯一般用在原厂的氙灯系统上比如pst、audi等等)h1(远光灯泡)、h3(雾灯)、h4(远近光灯泡)、h7(近光灯泡)
2、 氙灯系统改装的方式:一般两种,
a) 一种是比较奢侈的总称改装——即大灯总称和灯泡全换。这种方式效果没得讲,但是有两个局限性第一:价格太高;宝来的海拉总成10000多而还海拉的灯泡,4000——5000。第二个总成受原厂商的配件的限制,如果该车型根本就没有氙灯总成,那就没办法了。比如小切,就是肯定没有原厂的氙灯总成了。
b) 第二个就是仅换灯泡而已了。
3、 改装的过程:仅换灯泡的氙灯,产品包含四部分:升压器、安定器以上两个东西是香烟盒大小的铁盒子,固定到车里就行了、灯泡、导线。不用改装线路,只要把原来接到灯泡上的线,联到升压起上就可以了。非常简单。
4、 决定改装前必须要考虑清楚的风险:
a) 关于高频干扰的问题:氙气灯启动瞬间需要3。5万伏的高压。有一定的可能性会干扰车内电器,比如音响,宝来好像还有干扰雨刷器的现象。发生的比例很小,但是有可能性,需要做好心理准备。
b) 关于穿透性的问题:氙气灯的k数比较高,根据光学原理,k数越高越容易被低k数的灯光所覆盖,一般的路灯只有2000k以下。效果不明显。需要适应。但是你看看反光板,就知道灯的亮度足够了。周围环境越黑,氙灯的效果越好。尤其走黑夜的山路时,你就会发现他的可爱。但是有一个比较值得注意的问题:氙灯在雨雪雾天气下的穿透力比较差,下降的比较厉害。需要喜欢极限越野的弟兄考虑一下。冲实际应用来看,北京的几次雨雪,感觉氙灯的穿透力虽然下降,但是也没觉得比卤素灯差多少,因为本身他的亮度下降一半还比卤素灯亮呢。
c) 关于光喇叭的问题:因为氙灯本身的特点,从点亮到最大亮度需要几秒的时间。可能没有那么随心所欲闪大灯的感觉。从实际反馈来看,并没有那么严重:首先:第一次闪大灯的时候,光线比较弱,但是还是那句话——但是也足够用了他一半的亮度就比卤素灯亮得多。而且——随后再闪大灯就基本不会有亮度的滞后了。应该是电容的作用。氙灯对光喇叭不会有很大的影响。
d) 关于装完以后氙灯效果的问题:装完以后的效果影响最重要的是两个:第一、灯光的调教,一定要调灯光。因为氙灯本来就很亮了,稍微没调整好,就会对其他车辆产生很大的影响。所以一定要调光,为了别人。第二也就是非常重要:就是灯具的总称的本身的素质——这也是我们无法改变的东西:一般来说:远近光分开的圆形灯碗效果非常好,效果最差的就是远近光一体的方形灯头的灯,其中又以宝来为最差。很不幸,小切就是这种。我没仔细看过小切的灯。感兴趣的可以仔细看看小切的灯光是否很发散,如果不是很发散。应该就问题不大,如果太发散,还是算了。
e) 安全性的问题:氙灯应该是成熟的改装,不改动原车线路应该问题不大,关键是固定好各个部件,另外虽然他只有35w但是发热还是比较厉害的。不要用劣质的灯头。

29、轮胎:
    赛车界中流传着一句话:“一切为了轮胎”。不管是动力、底盘或是刹车,所有的一切设计都只为了与轮胎搭配,没了轮胎一切都是空谈!这句话也体现了轮胎的重要性。
    轮胎具有四项重要的工作:支撑、传达、缓和以及停止。“支撑”是支持车辆种种动作的基本功能。“传达”为实际传达路面的驱动力,也就是“抓地力”的意思。“缓和”功能意义上好象悬挂系统,可吸收来自路面的振动不会传达给车辆。至于“停止”,顾名思义就是让车辆停下来的功能。
宽胎:让行车更稳
    一般车主想升级轮胎最简单的做法就是换宽胎,也就是把轮胎内径加大。比如原厂是14吋,加大1吋就变成15吋。而一般换宽胎的时候轮胎外径应保持不变,在这个外径相同的条件下轮胎的胎壁必定变薄,轮胎的刚性会因此提高,车辆的稳定性、过弯速度、刹车效率等都会跟着提高。在现今汽车厂家中,性能愈高轮胎的升级就越明显,例如在1986年的保时捷930前轮配205/55-16、后轮配245/45-16,到2000年的保时捷996 Turbo前轮配225/40-18、后轮配295/30-18,可见得车辆性能和轮胎尺寸的关系密切。
    在加装宽胎后,轮胎的胎面形状也将会有所不同,由原先高高的方块状变成较扁平的方块,所能承受的侧向应力将会强上许多,因此不论是弯道或刹车,轮胎的变形度将会受到抑制,车辆稳定性也自然增强。而这些轮胎升级后的益处反应在操控上大致上可从以下几点看出:
一、行走性:由于宽胎的关系,方向盘手感增强,再加上实际性能的改变让车辆在中高速的操控稳定性提高。
二、过弯能力:加装宽胎后轮胎刚性大幅提高,因此过弯轮胎的变形度将会变小,车辆的循迹性会因此提升,同时在紧急事故的应变上也更显余裕。
三、刹车效率:由于轮胎刚性的提高,所以在刹车时轮胎所产生的变形度较小,刹车稳定性提升,刹车效果能更完整地传递到路面,刹车距离因而缩短。
解读轮胎的身世
当然加装宽胎的优点很多,但同时它可能也会带给车主一些困扰,像乘坐舒适性、噪音、油耗等均会恶化,车主在加装宽胎之前也是必需考虑的。如果不加装宽胎但又想提高车辆轮胎性能,可更换较跑车化的轮胎,其胎体刚性、胶质及胎块等均朝高性能化发展,虽然尺寸和原厂相同,但性能有相当的提升,当然效果就没有加装宽胎那么好,相对的,加装宽胎的缺点会在这种情况下减缓许多。
大家面对林林总总的轮胎可能会晕头转向,其实在轮胎边上就有不少关於轮胎的资讯及身世,如“TUBELESS”指的是无内胎。RADIAL表示这条是子午线轮胎,子午线轮胎有着高速稳定性佳、过弯抓地面积较大、抓地力强等优点。“STEEL BELTED”表示轮胎帘布层内含钢丝,也就是所谓的钢丝胎。
「TREADWEAR xxx」指的是磨耗指数,数值越低表示抓地力越强,但相对的寿命就比较短。此外,胎边还有制造国家、制造年月分等资讯,大家要知道轮胎是橡胶製品,橡胶会随着时间渐渐地硬化,所以有时买到过期产品其效果会大打折扣。
何时该换轮胎?
    虽然有不少的车主用车里程并不多,但轮胎还是有一定的使用寿命,当车主发现轮胎逐渐变硬、老化龟裂等情形发生,就应毫不犹豫地换轮胎,特别是有类似气泡的凸起物,就表示该处的结构层已经断了、承受不起胎压而起泡,随时都有爆胎的情况发生。至於磨耗多少时该换胎呢?除了异常的吃胎外,只要胎纹深度低於1.6mm时,就该换胎。有不少的品牌会在胎面设计一个磨损记号,当胎面磨损到这个记号漏出来时,也就表示该换胎了。
    虽然轮胎是消耗品,但只要细心的保养还是可以使得寿命延长,定时检查胎面状况及胎压是维持轮胎寿命的一个方法。换新胎时最好一起做四轮定位才不会导致轮胎异常磨损,当然面对不佳的道路品质,定位角度很容易改变,所以养成定时做定位是保护轮胎的最佳方式。
    其次最好每一万公里做一次前后对调,因为前轮需负起转向的动作,所以在磨损程度上会比较严重,这样才不会有前轮磨光了后轮还很新。当然如果有时间最好经常检查胎压,胎压除了会影响轮胎寿命外,还直接地影响到行路舒适性及操控性,往往一个胎压不对,可能会使得车辆的整体性能大幅改变,所以除了需对原厂所建议的胎压要认知外,还需依个人需求来寻找出适合自己的胎压。
关系安全马虎不得
    不少人对换轮胎还是抱持着能省则省的态度,眼见胎纹已快看不见了还舍不得更换,轮胎升级除了提升操控性能外,也间接地增加了安全性,虽然价位不低但绝对轻忽不得,毕竟这是攸关性命安全的重要部品。各位读者除了在选购时要认清产品的优劣外,还需依个人需求去选择,像有些高性能胎寿命都很短,如果你只不过是曰常代步根本不需要去换这类的产品,千万记得,认清自己的需求才是玩车的长久之道。
轮胎尺寸规格的解读
以195/55 R15为例:
195:断面宽度(轮胎接地面积,以mm表示)
55:扁平比(断面高÷断面宽×100%)
R:构造记号(R是子午线轮胎的缩写)
15:轮胎内径(轮圈的直径,以英吋表示)

30、什么叫CKD和SKD?
  CKD(Completely Knock Down)全散装件
  CKD是以全散件形式作为进口整车车型的一种专有名词术语,在当地生产的零部件以较低的关税和较低的工资,利用当地劳动力组装成整车,并以较低零售价出售。
  目前,我国引进的轿车的整车生产企业或OEM配套商中利用全散件在装配线上组装成总成或部件并进行检验、测试后出厂。全散件可以是进口零部件,也可以是本地生产的零部件。现在大部分OEM配套供应商采用一部分进口零部件,一部分本地生产的零部件或有的全部是本地生产的零部件在装配线上组装成总成或部件。
  SKD(Semi Knock Down)半散装件
  在国际贸易中,特别是在国际汽车贸易中,整车出口国的汽车公司把成品予以拆散,而以半成品或零部件的方式出口,再由进口厂商在所在国以自行装配方式完成整车成品并进行销售。
  采用此种方式对出口方来讲,除了可节省运费,利用进口国低廉劳动力外,还可享受某种痹畸车进口较低的进口关税,对进口国而言,有促进本国工业发展,并增加就业机会,占领本国市场的作用。其中SKD(半散装件)是指汽车各大部件总成(如发动机、底盘等)基本上以半成品形式分别装箱出口,进口国则就地将它们装成整车。
  这种方式是我国引进的轿车翟畸车生产企业在开始阶段都采用的方式。如上海桑塔纳轿车在生产初期国产化只有轮胎、收放机等,绝大部分总成、零部件以SKD方式进口在上海大众组装成整车。
  
31、OBD-II标准故障码
一)OBD-II的特点:
1.统一车种诊断座形状为16PIN。
2.上有数值分析资料传输功能(DATA LINK CONNECTOR简称DLC)。
3.统一各车种相同故障代码及意义。
4.具有行车记录器功能。
5.具有重新显示记忆故障码功能。
6.具有可由仪器直接清除故障码功能。
(二)DLC诊断座统一标准:
1.DLC诊断座为统一16PIN脚,并装置在驾驶室,驾驶侧仪表板下方
2.DLC PIN脚说明:
资料传输线有两个标准:
■ISO=欧洲统一标准.(INTERNATION STANDARDS
利用7#,15#脚 ORGANIZA TION 1941-2)
■SAE=美国统一标准.(SAE-JI850)
利用2#,10#脚
标准PIN脚功用:-- OBD-II-DLC接头
1# 提供制造厂应用 9# 提供制造厂应用
2# SAEJ 1850所制定的资料传输线 10# SAE制造厂所制定的资料 传输线
3# 提供制造厂应用 11# 提供制造厂应用
4# 直接车身搭铁 12# 提供制造厂应用
5# 信号回路搭铁 13# 提供制造厂应用
6# 提供制造厂应用 14# 提供制造厂应用
7# ISO-9141-2所制定的资料传输线K 15# ISO-9141-2所制定的资料 传输线L
8# 提供制造厂应用 16# 直接电瓶正电源
3.自1990年11月SAE定订J2054号通报-- 「诊断资料通讯标准」制定了14
个模式,简称为(DTM) -- DIAGNOSTIC TEST MODES.
SAE-J2054号通报中制定的14个诊断通讯模式:
模式 功 能 模式 功 能
0 回到正常模式 7 数值指令显示
1 传输诊断资料 8 切断正常传输
2 记忆资料清除 9 连接正常传输
3 检测RAM资料 10 清除故障记忆
4 元件控制功能 11 暂停正常传输
5 RAM资料下载 12 依数值位置定义诊断
6 RAM资料修改 13 依记忆内码定义诊断
4.在1991年12月SAE定订J1979号通报,并在1994年6月修定该通报为--
「诊断测试模式标准」即为OBD系统(联邦)及OBD-II系统(加州)-- ON
--BOARD DIAGNOSTIC,制定7个模式,简称为(OBD/OBD-II)
SAE-J1979号通报中制定的7个诊断测试模式:
MODE $01-
◎目前引擎诊断数值需求
◎类比输入/输出信号
◎数值输入/输出信号
◎系统状态资讯
◎综合计算数据值 MODE $03 废气相关的引擎诊断
[模式3] 故障码
MODE $04 废气相关的诊断系统
[模式4] 清除与归零
CODE $05 含氧传感器监控测试
[模式5] 结果
MODE $02-
◎目前引擎瞬间数值需求
◎类比输入/输出信号
◎数位输入/输出信号
◎系统状态资讯
◎综合计算数据值 MODE $06 电脑监控非连续性
[模式6] 测试结果
MODE #07 电脑监控连续性测试
[模式7] 结果
5.在1993年6月SAE定订J2190号通报 -- 「加强诊断测试标准」该通报
依据J1979号通报(诊断测试模式标准)之增订文件,并适用于「诊断
通讯方面」SAE -J1850或ISO 9141-2标准。该标准是用来定义资料
传输的协定及OBD-II统一诊断的格式,并以电脑16进位(HEX)方式
来定义传输协定。
(三)、OBD-II故障码的意义和分类:
SAE将OBD-II故障码5个字组合而成,第1个字为英文代码,第2个到第5个
码为数字码。
故障码前2个字分别代表下列不同定义:
P0 引擎变速箱电脑控制系统由SAE统一制定的故障码
P1 引擎变速箱电脑控制系统由厂家各自制定的故障码
P2 引擎变速箱电脑控制系统预留故障码
P3 引擎变速箱电脑控制系统预留故障码
C0 底盘电脑控制系统,由SAE统一制定的故障码
C1 底盘电脑控制系统,由各厂空各自制定的故障码
C2 底盘电脑控制系统,预留故障码
C3 底盘电脑控制系统,预留故障码
B0 车身电脑控制系统,由SAE统一制定的故障码
B1 车身电脑控制系统,由各厂家各自制定的故障码
B2 车身电脑控制系统,预留故障码
B3 车电脑控制系统,预留故障码
U0 网路连接相关故障码
U1 网路连接相关故障码
U2 网路连接相关故障码
U3 网路连接相关故障码
P01XX 燃油和空气侦测系统
P02XX 燃油和空气侦测系统
P03XX 点火系统
P04XX 废气控制系统
P05XX 车速怠速控制系统
P06XX 电脑控制系统
P07XX 变速箱控制系统
P08XX 变速箱控制系统
P09XX SAE预留的故障码
P00XX SAE预留的故障码
P01XX 以后是由厂家自行制定的一部份
P11XX 燃油和空气侦测系统
P12XX 燃油和空气侦测系统
P13XX 点火系统
P14XX 废气控制系统
P15XX 怠速马速控制系统
P16XX 电脑控制系统
P17XX 变速箱控制系统
P18XX 变速箱控制系统
P19XX SAE预留的故障码
P10XX SAE预留的故障码
其他部份,SAE和厂家尚未完全制定,待制定出来以后,我们会以最快的
速度将它翻译整理后印给诸位。
代码 SAE定义故障范围 代码 SAE定义故障范围
1 燃料或空气测定系统不良 5 汽车或怠速控制系统不良
2 燃料或空气测定系统不良 6 电脑或输出控制元件不良
3 点火系统不良或引擎间歇熄火 7 变速箱控制系统不良
4 废气控制辅助装置系统不良 8 变速箱控制系统不良
目前该码“0”代表SAE所定义的故障码。“1”,“2”或“3”等
码,代表汽车制造厂。
OBD-II故障码快速引表:
SAE将引擎和变速箱的故障码大致分为10大类,细分如下:
OBD-II故障码 系 统 区 分
P01XX 燃料和进气系统
P02XX 燃料和进气系统
P03XX 点火系统
P04XX 废气控制相关系统
P05XX 车速感知,怠速控制相关系统
P06XX 控制电脑相关系统
P07XX 变速箱故障码
P08XX 变速箱故障码
P09XX SAE 预留部份
P00XX SAE预留部份
OBD-II标准故障码检索表:
故障码(P0330~P0376)
故障码(P0377-P0417) 故障码(P0418~P0468)
故障码(P0469~P0566) 故障码(P0567-P0704)
故障码(P0704~P0741) 故障码(P0741~P0772)
故障码(P0773~P0790)
故障码(P0330~P0376)
OBD II码 内 容
P0330 引擎在2000RPM以上一直没有收到爆震信号(BAND 2)(TOYOTA)
P0331 引擎在2000RPM以上电压值不正确(BANK 2)
P0332 爆震传感器电压太低(BANK 2)
P0333 爆震传感器电压太高 (BANK 2)
P0334 爆震传感器电压间歇故障 (BANK 2)
P0335 曲轴传感器A组线路失效
P0335 曲轴传感器A组线路电压值过低 (ACURA/HONDA)
P0336 曲轴传器A电压值不正确
P0336 加热式含氧传感器线路失效
P0337 曲轴传器A组线路电压太低
P0338 曲轴传器A组线路电压太高
P0339 曲轴传器A组线路间歇故障
P0340 凸轮轴传感器线路失效
P0341 凸轮轴传感器线路电压值不正确
P0342 凸轮轴传感器线路电压太低
P0342 可变汽门正时电磁伐在作用中
P0343 凸轮轴传感器线路电压太高
P0344 凸轮轴传感器线路间歇故障
P0350 点火线圈一次/二次线路失效
P0351 点火线圈A组一次/二次线路失效
P0352 点火线圈B组一次/二次线路失效
P0353 点火线圈C组一次/二次线路失效
P0354 点火线圈D组一次/二次线路失效
P0355 点火线圈E组一次/二次线路失效
P0356 点火线圈F组一次/二次线路失效
P0357 点火线圈G组一次/二次线路失效
P0358 点火线圈H组一次/二次线路失效
P0359 点火线圈I组一次/二次线路失效
P0360 点火线圈J组一次/二次线路失效
P0361 点火线圈K组一次/二次线路失效
P0362 点火线圈L组一次/二次线路失效
P0370 点火正时高解析参考线路A组失效
P0371 点火正时参考线路A组高转速时接收太多脉冲(受到干扰)
P0372 点火正时参考线路A组高转速曾收到太少的脉冲,曾收到中断脉冲(GM)
P0373 点火正时参考线路A组高转速时讯号间歇性不稳定
P0374 点火正时参考线路A组高转速时没有讯号
P0375 点火正时高解析参考线路B组失效
P0376 点火正时参考线路B组高转速时曾收太多讯号
P0377 点火正时参考线路B组高转速曾收到太少讯号
P0378 点火正时参考线路B组高转速时讯号间歇性不稳定
P0379 点火正时参考线路B组高转速时没有讯号
P0380 预热塞加热线路失效,火花增加线路不良
P0381 预热塞指示灯线路失效
P0385 曲轴传感器B组线路失效
P0386 曲轴传感器B组线路电压值不正确
P0387 曲轴传感器B组线路电压太低
P0388 曲轴传感器B组线路电压太高
P0389 曲轴传感器B组线路间歇故障
P0390 正时皮带打滑或跳齿(FORD)
P0391 第1组高压线圈低压线路不良(FORD)
P0392 第2组高压线圈低压线路不良(FORD)
P0393 第3组高压线圈低压线路不良(FORD)
P0394 第4组高压线圈低压线路不良(FORD)
P0395 第5组高压线圈低压线路不良(FORD)
P0396 第6组高压线圈低压线路不良(FORD)
P0400 EGR阀系统流量控制失效
P0401 EGR阀系统流量控制不正确或太低(阻塞)
P0401 引擎达工作温度,车速80KM以上行驶3~5分钟,
但EGR温度信号低于40℃
P0402 EGR阀系统流量控制太大(泄漏)
P0403 EGR阀流量电磁伐控制线路不良
P0404 EGR阀流量电磁伐控制线路电太值不正确
P0405 EGR阀流量传感器线路A组电压太低
P0406 EGR阀流量传感器线路A组电压太高
P0407 EGR阀流量传感器线路B组电压太低
P0408 EGR阀流量传感器线路B组电压太高
P0410 二次空气导入系统失效
P0411 二次空气导入系统流量值不正确
P0412 二次空气导入系统流量电磁阀A组线路失效
P0413 二次空气导入系统流量电磁阀A组线路断路
P0414 二次空气导入系统流量电磁阀A组线路短路
P0415 二次空气导入系统流量电磁阀B组线路失效
P0416 二次空气导入系统流量电磁阀B组线路断路
P0416 EGR温度传感器讯号不良(FORD)
P0417 二次空气导入系统流量电磁阀B组线路短路
P0417 EGR温度传感器讯号电压太低
P0418 EGR温度传感器讯号电压太高(FORD)
P0420 触媒系统净化效能太低 (BANK 1)
P0421 未达工作温度以前触媒系统净化效能太低(BANK 1)
P0422 触媒系统净化效能太低(BANK 1)
P0423 触媒转换器温度时净化效能降低(BANK 1)
P0424 触媒转换器工作温度太低(BANK 1)
P0430 触媒系统净化效能低于净化范围(BANK 2)
P0431 暖车时触媒转换器净化效能降低 (BANK 2)
P0432 主触媒转换器净化效能太低 (BANK 2)
P0433 触媒转换器热效能太低 (BANK 2)
P0440 燃油蒸发器系统管路阻塞(VOLVO)
P0440 燃油蒸发系统侦测出少量泄漏
P0440 燃油蒸发控制系统线路失效
P0441 燃油蒸发控制系统碳罐油气流量不正确或无油气流动
P0442 燃油蒸发控制系统检测出少量油气泄漏
P0443 燃油蒸发控制系统碳罐电磁伐控制线路失效
P0444 燃油蒸发控制系统碳罐电磁伐控制线路断路或电压太低
P0445 燃油蒸发控制系统碳罐电磁伐控制线路断路或电压太高
P0446 燃油蒸发控制系统碳罐电磁伐控制线路不良(FORD)
P0446 燃油蒸发控制系统通风控制阀路线不良(INFINITI)
P0447 燃油蒸发控制系统碳罐电磁阀线路断路(FORD)
P0448 燃油蒸发控制系统碳罐电磁阀控制线路不良(FORD)
P0450 燃油蒸发控制系统压力传感器线路不良
P0451 燃油蒸发控制系统压力传感器电压不正确
P0452 燃油蒸发控制系统压力传感器电压太低
P0453 燃油蒸发控制系统压力传感器电压太高
P0454 燃油蒸发控制系统压力传感器间歇故障
P0455 燃油蒸发气控制系统检测出大量泄漏
P0460 燃油高度传感器线路失效
P0461 燃油高度传器线路电压值不正确
P0462 燃油高度传器线路电压太低
P0463 燃油高度传器线路电压太高
P0464 燃油高度传器线路间歇故障
P0465 碳罐流量传感器线路失效
P0466 碳罐流量传感器线路电压值不正确
P0467 碳罐流量传感器线路电压太高
P0468 碳罐流量传感器线路电压太低
P0469 碳罐流量传感器线路间歇故障
P0470 滑轮增压器排气压力传感器线路失效
P0471 滑轮增压器排气压力传感器线路电压值不正确
P0472 滑轮增压器排气压力传感器电压太低
P0473 滑轮增压器排气压力传感器电压太高
P0474 滑轮增压器排气压力传感器间歇故障
P0475 滑轮增压器排气压力控制阀失效
P0476 滑轮增压器排气压力控制阀电压值不正确
P0477 滑轮增压器排气压力控制阀电压太低
P0478 滑轮增压器排气压力控制阀电压太高
P0479 滑轮增压器排气压力控制阀间歇故障
P0498 动力转向压力开关信号不良(FORD)
P0499 P/N开关信号不良(FORD)
P0500 车速传器线路失效或间歇不良(FORD)
P0500 车速传感器线路电压太低(ACURA/HONDA)
P0501 车速传感器线路电压不正或太高(FORD)
P0502 车速传感器电压太低
P0503 车速传器输入线路间歇性电压太高
P0505 怠速控制系统失效
P0506 引擎怠速太低
P0507 引擎怠速太高
P0510 节汽门传感器怠速接点线路失效
P0530 A/C冷媒压力传感器失效
P0531 A/C冷媒压力传感器线路电压值不正确或冷媒量不足(FORD)
P0532 A/C冷媒压力传感器线路电压太低
P0533 A/C冷媒压力传感器线路电压太高
P0534 冷气系统有冷媒泄漏
P0550 动力转向油压传感器线路失效
P0551 动力转向油压传感器线路电压值不正确
P0552 动力转向油压传感器线路电压太低
P0553 动力转向油压传感器线路电压太高
P0554 动力转向油压传感器线路间歇故障
P0560 电瓶电压太高或太低
P0561 电瓶电压不稳定
P0562 电瓶电压太低
P0563 电瓶电压太高
P0565 定速控制系统ON线路开关信号不良
P0566 定速控制系统OFF线路开关信号不良
P0567 定速控制系统RESUME线路开关信号不良
P0568 定速控制系统STE线路开关信号不良
P0569 定速控制系统COAST线路开关信号不良
P0570 定速控制系统ACCEL线路开关信号不良
P0571 定速控制系统刹车开关线路A组失效
P0572 定速控制系统刹车开关线路A组电压太低
P0573 定速控制系统刹车开关线路A组电压太高
P0574 定速控制系统RESUME线路失效
P0575 定速控制系统SET线路失效
P0576 定速控制系统COAST线路失效
P0577 定速控制系统ACCLE线路失效
P0578 定速控制系统刹车开关线路失效
P0579 定速控制系统刹车开关线路电压太低
P0580 定速控制系统刹车开关线路电压太高
P0600 ECM电脑序列资料传输失效
P0600 ECM电脑故障(ACURA/HONDA)
P0601 电脑内部计算值失效或ECM电脑RAM(随机存取记忆体)失效(SATURN)
P0601 ECM电脑记忆体失效或EPROM不良(FORD)
P0602 ECM电脑控制模组程式错误
P0602 ECM电脑记忆体程式未设定(GM)
P0603 ECM电脑非挥发性记忆体(NON-VOLATILE RAM)失效(SATURN)
P0603 ECM电脑活性存取记忆体(KAM)失效
P0604 ECM电脑RAM(随机存取记忆体)失效(SATURN)
P0605 ECM电脑唯读记忆 (RUM)失效
P0605 ECM电脑EEPROM失效(SATURN)
P0605 ECM电脑内部控制不良(主电脑不良)(FORD)(VOLVO)
P0606 ECM电脑电子IOC失效(SATURN)
P0606 ECM电脑内部印刷线路接点断路
P0606 ECM电脑程式处理错误或微处理器不良
P0700 变速箱电脑控制系统失效
P0701 变速箱电脑控制系统电压值不正确
P0701 换档迟延电磁阀正在作动当中
P0702 变速箱电脑控制系统电压控制系统失效
P0703 扭力变换接合器TCC输入线路不良(GM)
P0703 扭力变换接合器TCC刹车开关线路失效
P0704 扭力变换接合器TCC开关线路不良
P0704 离合器开关线路失效
P0704 空档开关线路失效(FORD)
P0705 档位传感器线路失效
P0706 档位传感器线路电压值不正确
P0707 档位传感器线路电压太低
P0708 档位传感器线路电压太高
P0709 档位传感器线路间歇故障
P0710 变速箱油温传感器线路失效
P0711 变速箱油温传感器线路电压值不正确
P0712 变速箱油温传感器线路电压太低
P0713 变速箱油温传感器线路电压太高
P0714 变速箱油温传感器线路间歇故障
P0715 扭力变换接合器输入轴转速传感器线路失效
P0716 扭力变换接合器输入轴转速传感器线路电压值不正确
P0717 扭力变换接合器转速传感器没有讯号输出
P0718 扭力变换接合器转速传感器间歇故障
P0719 扭力变换接合器刹车开关线路电压太低
P0720 输出轴转速传感器线路失效
P0721 输出轴转速传感器线路电压值不正确
P0722 输出轴转速传感器线路没有讯号输出
P0723 输出轴转速传感器线路间歇故障
P0724 扭力变换接合器刹车开关线路电压太高
P0725 引擎转速传感器线路失效
P0726 引擎转速传感器线路电压值不正确
P0727 引擎转速传感器线路没有讯号输出
P0728 引擎转速传感器线路间歇故障
P0730 齿轮比或档不正确
P0731 1档齿轮比不正确
P0732 2档齿轮比不正确
P0733 3档齿轮比不正确
P0734 4档齿轮比不正确
P0735 5档齿轮比不正确
P0736 倒档齿轮比不正确
P0740 引擎负荷与燃料控制无法配合(BNEZ)
P0740 扭力变换接合器线路失效
P0740 扭力变换接合器电磁阀控制线路失效
P0741 引擎负荷与节汽门开度无法配合
P0741 扭力变换接合器电磁线圈未通电
P0741 扭力变换接合器线路电压值不正确
P0741 扭力变换接合器电磁阀控制线路电压值不正确或卡在全关位置
P0742 扭力变换接合器电磁线圈一直通电
P0742 扭力变换接合器电磁阀控制线路粘着或卡在全开位置
P0743 扭力变换接合器电磁阀控制线路短路或断路
P0744 扭力变换接合器电磁阀控制线路间歇故障
P0745 压力控制电磁阀失效
P0746 压力控制电磁阀电压值不正确或不通电(卡在全开位置)
P0747 压力控制电磁阀一直通电(卡在全开位置)
P0748 输出轴压力电磁阀故障
P0748 压力控制电磁阀短路或断路
P0749 压力控制电磁阀间晚故障
P0750 换档电磁阀A组失效
P0751 电磁电压太低(BNEZ)
P0751 输出轴压力电磁阀一直通电(GM)
P0752 换档电磁阀A组电压值不正确或不通电(卡在全开位置)
P0753 换档电磁阀A组一直通电(卡在全开位置)
P0754 换档电磁阀A组间歇故障
P0755 换档电磁阀B组失效
P0756 换档电磁阀B组电压值不正确或不通电(卡在全关位置)
P0757 换档电磁阀B组一直通电(卡在全开位置)
P0758 输出轴控制电磁阀线路失效(GM)
P0758 换档电磁阀B组短路或断路
P0759 换档电磁阀B组间歇故障
P0760 换档电磁阀C组失效
P0761 换档电磁阀C组电压值不正确或不通电(卡在全关位置)
P0762 换档电磁阀C组一直通电(卡在全开位置)
P0763 换档电磁阀C组短路或断路
P0764 换档电磁阀C组间歇故障
P0765 换档电磁阀D组失效
P0766 换档电磁阀D组电压值不正确或不通电(卡在全关位置)
P0767 换档电磁阀D组一直通电(卡在全开位置)
P0768 换档电磁阀D组短路或断路
P0769 换档电磁阀D组间歇故障
P0770 换档电磁阀E组失效
P0770 扭力变换接合器TCC电磁阀线路不良(TOYOTA)
P0771 换档电磁阀E组电压值不正确或不通电(卡在全关位置)
P0772 换档电磁阀E组一直通电(卡在全开位置)
P0741 扭力变换接合器电磁阀控制线路电压值不正确或卡在全关位置
P0742 扭力变换接合器电磁线圈一直通电
P0742 扭力变换接合器电磁阀控制线路粘着或卡在全开位置
P0743 扭力变换接合器电磁阀控制线路短路或断路
P0744 扭力变换接合器电磁阀控制线路间歇故障
P0745 压力控制电磁阀失效
P0746 压力控制电磁阀电压值不正确或不通电(卡在全开位置)
P0747 压力控制电磁阀一直通电(卡在全开位置)
P0748 输出轴压力电磁阀故障
P0748 压力控制电磁阀短路或断路
P0749 压力控制电磁阀间晚故障
P0750 换档电磁阀A组失效
P0751 电磁电压太低(BNEZ)
P0751 输出轴压力电磁阀一直通电(GM)
P0752 换档电磁阀A组电压值不正确或不通电(卡在全开位置)
P0753 换档电磁阀A组一直通电(卡在全开位置)
P0754 换档电磁阀A组间歇故障
P0755 换档电磁阀B组失效
P0756 换档电磁阀B组电压值不正确或不通电(卡在全关位置)
P0757 换档电磁阀B组一直通电(卡在全开位置)
P0758 输出轴控制电磁阀线路失效(GM)
P0758 换档电磁阀B组短路或断路
P0759 换档电磁阀B组间歇故障
P0760 换档电磁阀C组失效
P0761 换档电磁阀C组电压值不正确或不通电(卡在全关位置)
P0762 换档电磁阀C组一直通电(卡在全开位置)
P0763 换档电磁阀C组短路或断路
P0764 换档电磁阀C组间歇故障
P0765 换档电磁阀D组失效
P0766 换档电磁阀D组电压值不正确或不通电(卡在全关位置)
P0767 换档电磁阀D组一直通电(卡在全开位置)
P0768 换档电磁阀D组短路或断路
P0769 换档电磁阀D组间歇故障
P0770 换档电磁阀E组失效
P0770 扭力变换接合器TCC电磁阀线路不良(TOYOTA)
P0771 换档电磁阀E组电压值不正确或不通电(卡在全关位置)
P0772 换档电磁阀E组一直通电(卡在全开位置)
P0773 换档电磁阀E组短路或断路
P0773 扭力变换接合器TCC电阀线路断路或短路(TOYOTA)
P0774 换档电磁伐E组间歇故障
P0780 无法换档
P0781 1→2档无法换档(换档电磁阀短路或断路)
P0782 2→3档无法换档(换档电磁阀短路或断路)
P0783 3→4档无法换档(换档电磁阀短路或断路)
P0784 4→5档无法换档(换档电磁阀短路或断路)
P0785 换档延迟控制电磁阀换效
P0786 换档延迟控制电磁阀电压值不正确
P0787 换档这控制电磁阀电压太低
P0788 换档这控制电磁阀电压太高
P0789 换档这控制电磁阀间歇故障
P0790 经济/跑车档切换开关线路失效
(四)OBD-II标准故障码检索表:
(P0000~P0999)SAE统一规定的部份:
故障码(P0000~P0131)
OBD II码 内 容
P0000 没有故障(FORD)
P0100 空气流量计线路不良
P0101 空气流量计不良(讯号值错误)
P0102 空气流量计线路输入电压太低
P0103 空气流量计线路输入电压太高
P0104 空气流量计线路间歇故障
P0105 空气压力传感器线路不良或无讯号输出(FORD)
P0106 空气压力传感器系统电压值不正确或打马达时当引擎发
动后MAP讯号相同(FORD)
P0107 空气压力传器系统输入电压太低
P0108 空气压力传器系统输入电压太高
P0109 进气温度传感器线路间歇性不良
P0110 进气温度传感器线路间歇性不良
P0111 进气温度传感器线路(讯号值错误)
P0112 进气温度传感器线路电压太低
P0113 进气温度传感器线路输入电压太高
P0114 进气温度传感器线路间歇故障
P0115 水温传感器线路不良
P0116 水温传感器线路(讯号错误)
P0116 引擎发动20分钟以上,温度仍在30℃以下(TOYOTA)
P0117 水温传感器电压太低
P0118 水温传感器电压太高
P0119 水温传感器电压线路间歇故障
P0120 节汽门传感器线路不良
P0120 节汽门传感器信号低于0.1V或高于4.9V(TOYOTA)
P0121 节汽门传感器线路不良
P0121 辅助节汽门传感器电压值不正确或调整不良(TOYOTA)
P0121 节汽门传感器的电压无法和进气压力传感器的电压配
合(CHRYSER)
P0122 节汽门传感器讯号电压太低
P0122 辅整助节汽门传感器讯号太高
P0123 节汽门传感器线路电压太高
P0123 节汽门传感器电压太高
P0124 节汽门传感器线路间歇故障
P0125 水温传感器感测进入回路(CLOSE LOOP)控制时间太长
P0126 水温传感器电压值不稳定
P0130 含氧传感器线路失效(BANK 1,SENSOR 1)
P0131 含氧传感器线路电压太低或短路(BANK 1,SENSOR 1)
P0132 含氧传感器线路电压太高(BANK1,STESOR 1)
P0133 含氧传感器反应太慢 (BANK1,STESOR 1)
P0134 含氧传感器反应次数太少或无作用 (BANK1,STESOR 1)
P0135 含氧传感器的加热线路不良 (BANK1,STESOR 1)
P0136 含氧传感器失效 (BANK1,STESOR 2)
P0136 含氧传感器在引擎负荷时电压值不正确 (BANK1,STESOR 2)
P0137 含氧传感器线路短路 (BANKZ) (BANK2)
P0137 含氧传感器电压太低 (BANK1,STESOR 2)
P0138 含氧传感器电压太高 (BANK1,STESOR 2)
P0139 含氧传感器反应太慢 (BANK1,STESOR 2)
P0140 含氧传器反应次数太少或无作用 (BANK1,STESOR 2)
P0141 含氧传感器加热线路不良 (BANK1,STESOR 2)
P0142 含氧传感器加热线路不良 (BANK1,STESOR 3)
P0143 含氧传感器电压太低 (BANK1,STESOR 3)
P0144 含氧传感器电压太高 (BANK1,STESOR 3)
P0145 含氧传感器反应太慢 (BANK1,STESOR 3)
P0146 含氧传感器无作用,反应次数太少 (BANK1,STESOR 3)
P0147 含氧传感器加热线路不良 (BANK1,STESOR 3)
P0150 含氧传感器不作用 (BANK2,STESOR 1)
P0151 含氧传感器电压太低 (BANK2,STESOR 1)
P0152 含氧传感器电压太高 (BANK2,STESOR 1)
P0153 含氧传感器反应太慢 (BANK2,STESOR 1)
P0154 含氧传感器反应次数太少 (BANK2,STESOR 1)
P0155 含氧传感器加热线路不良 (BANK2,STESOR 1)
P0156 含氧传感器加热线路不良 (BANK2,STESOR 2)
P0157 含氧传感器电压太低 (BANK2,STESOR 2)
P0158 含氧传感器电压太高 (BANK2,STESOR 2)
P0159 含氧传感器反应太慢 (BANK2,STESOR 2)
P0160 含氧传感器反应次数太少或无作用 (BANK2,STESOR 2)
P0161 含氧传感顺加热线路不良 (BANK2,STESOR 2)
P0162 含氧传感器不作用 (BANK2,STESOR 3)
P0163 含氧传感器电压太低 (BANK2,STESOR 3)
P0164 含氧传感器电压太高 (BANK2,STESOR 3)
P0165 含氧传感器反应太慢 (BANK2,STESOR 3)
P0166 含氧传感居反应次数太少或无作用 (BANK2,STESOR 3)
P0167 含氧传感器加热线路不良 (BANK2,STESOR 3)
P0170 燃料修正(混合比)不良 (BAND 1)
P0171 混合比太稀 (BANK 1)
P0172 混合比太浓(BANK 1)
P0173 燃料修正失效(BANK 2)
P0174 混合比太稀 (BANK 2)
P0175 混合比太浓 (BANK 2)
P0176 燃料含水量传感器线路失效
P0177 燃料含水量传感器线路电压值不正确
P0178 燃料含水量传感器线路电压太低
P0179 燃料含水量传感器线路电压太高
P0180 A组燃料温度传感器线路的失效
P0181 A组燃料温度传感器线路电压不正确
P0182 A组燃料温度传器线路电压太低
P0183 A组燃料温度传器线路电压太高
P0184 A组燃料温度传器线路间歇故障
P0185 B组燃料温度传感器线路失效
P0186 B组燃料温度传感器线路电压不正确
P0187 B组燃料温度传感器线路电压太低
P0188 B组燃料温度传感器线路电压太高
P0189 B组燃料温度传感器线路间歇故障
P0190 燃油分供管油压传感器线路失效
P0191 燃油分供管油压传感器线路电压不正确
P0192 燃油分供管油压传感器线路电压太低
P0193 燃油分供管油压传感器线路电压太高
P0194 燃油分供管油压传器线路间歇故障
P0195 引擎机油温度传感器线路失效
P0196 引擎机油温度传感器线路电压太低
P0197 引擎机油温度传感器线路电压太高
P0198 引擎机油温度传感器线路电压太高
P0199 引擎机油温度传感器线路间歇故障
P0200 喷油咀控制线路失效
P0201 第1缸喷油咀控制线路失效
P0202 第2缸喷油咀控制线路失效
P0203 第3缸喷油咀控制线路失效
P0204 第4缸喷油咀控制线路失效
P0205 第5缸喷油咀控制线路失效
P0206 第6缸喷油咀控制线路失效
P0207 第7缸喷油咀控制线路失效
P0208 第8缸喷油咀控制线路失效
P0209 第9缸喷油咀控制线路不良
P0210 第10缸喷油咀控制线路不良
P0211 第11缸喷油咀控制线路不良
P0212 第12缸喷油咀控制线路不良
P0213 1号冷车启动喷油咀控制线路不良
P0214 2号冷车启动喷油咀控制线路不良
P0215 引擎限速断油电磁伐(SHOUT OFF SOLENOID)控制线路失效
P0216 喷射正时控制线路失效
P0217 引擎处于过热状态
P0218 变速箱处于过热状态
P0219 引擎转速超过电脑设定值
P0220 辅度助节汽门传感器或节汽门传感器B组线路失效
P0220 汽油泵继电器控制线路不良(CHRYLSER)
P0221 辅助节汽门传感器或节汽门传感器B组线路电压值不正确
P0222 辅助节汽门传感器讯号或节汽门传感器B组线路电压太低
P0223 辅助节汽门传感器讯号或节汽门传感器B组线路电压太高
P0224 辅助节汽门传感器讯号或节汽门传感器B组线路间歇故障
P0225 辅助节汽门传感器或节汽门传感器C组线路失效
P0226 辅助节汽门传感器或节汽门传感器C组线路电压值不正确
P0227 辅助节汽门传感器讯号或节汽门传感器CC组线路电压太低
P0228 辅助节汽门传感器讯号或节汽门传感器C组线路电压太高
P0229 辅助节汽门传感器讯号或节汽门传感器C组线路间歇故障
P0230 汽油泵主线路失效
P0231 汽油泵回归电压太低(GM)
P0231 汽油泵副线路电压太低
P0232 汽油泵回归电压太高
P0232 汽油泵副线路电压太高
P0233 汽油泵副线路间歇故障
P0235 滑轮增压器压力传器A线路失效
P0236 滑轮增压器压力传 A线路电压值不正确
P0237 滑轮增压器压力传感器A线路电压太低
P0238 滑轮增压器压力传感器A线路电压太高
P0239 滑轮增压器压力传感器B线路失效
P0240 滑轮增压器压力传感器B线路电压值不正确
P0241 滑轮增压器压力传器B线路电压太低
P0242 滑轮增压压力传器B线路电压太高
P0243 滑轮增压器排气控制电磁伐控制线路A失效
P0244 滑轮增压器排气控制电磁伐控制线路A电脑不正确
P0245 滑轮增压器排气控制电磁伐A太低
P0246 滑轮增压器排气控制电磁伐控制线路A电压太高
P0247 滑轮增压排气控制电磁伐控制线路B失效
P0248 滑轮增压器排气控制电磁伐控制线路B值不正确
P0249 滑轮增压器排气控制电磁伐控制线路B电压太低
P0250 滑轮增压器排气控制电磁伐控制线路B电压太高
P0251 柴油引擎A组喷射泵凸轮或轮子失效
P0252 柴油引擎A组喷射泵凸轮或轮子电压值不正确
P0253 柴油引擎A组喷射泵凸轮或轮子电压太低
P0254 柴油引擎A组喷射泵凸轮或轮子电压太高
P0255 柴油引擎A组喷射泵凸轮或轮子间歇故障
P0256 柴油引擎A组喷射泵凸轮或轮子失效
P0257 柴油引擎A组喷射泵凸轮或轮子电压值不正确
P0258 柴油引擎A组喷射泵凸轮或轮子电压太低
P0259 柴油引擎A组喷射泵凸轮或轮子电压太高
P0260 柴油引擎A组喷射泵凸轮或轮子间歇故障
P0261 第1缸喷油咀线路电压太低
P0262 第1缸喷油咀线路电压太高
P0263 第1缸运转不良;第8缸动力平衡不良(GM)
P0264 第2缸喷油咀线路电压太低
P0265 第2缸喷油咀线路电压太高
P0266 第2缸运转不良;第7缸动力平衡不良(GM)
P0267 第3缸喷油咀线路电压太低
P0268 第3缸喷油咀线路电压太高
P0269 第3缸运转不良;第2缸动力平衡不良(GM)
P0270 第4缸喷油咀线路电压太低
P0271 第4缸喷油咀线路电压太高
P0272 第4缸运转不良;第6缸致力平衡不良 (GM)
P0273 第5缸喷油咀线路电压太低
P0274 第5缸喷油咀线路电压太高
P0275 第5缸运转不良;第5缸动力平衡不良(GM)
P0276 第6缸喷油咀线路电压太低
P0277 第6缸喷油咀线路电压太高
P0278 第6缸运转不良;第4缸动力平衡不良(GM)
P0279 第7缸喷油咀线路电压太低
P0280 第7缸喷油咀线路电压太高
P0281 第7缸运转不良;第3缸动力平衡不良(GM)
P0282 第8缸喷油咀线路电压太低
P0283 第8缸喷油咀线路电压太高
P0284 第8缸运转不良;第1缸动力平衡不良(GM)
P0285 第9缸喷油咀线路电压太低
P0286 第9缸喷油咀线路电压太高
P0287 第9缸运转不良
P0288 第10缸喷油咀线路电压太低
P0289 第10缸喷油咀线路电压太高
P0290 第10缸运转不良
P0291 第11缸喷油咀线路电压太低
P0292 第11缸喷油咀线路电压太高
P0293 第11缸运转不良
P0294 第12缸喷油咀线路电压太低
P0295 第12缸喷油咀线路电压太高
P0296 第12缸运转不良
P0297 进气压力传感器讯号一直变化(FORD)
P0300 引擎曾经有失火(MISFIRE)现象
P0301 第1缸曾经失火
P0302 第2缸曾经失火
P0303 第3缸曾经失火
P0304 第4缸曾经失火
P0305 第5缸曾经失火
P0306 第6缸曾经失火
P0307 第7缸曾经失火
P0308 第8缸曾经失火
P0309 第9缸曾经失火
P0310 第10缸曾经失火
P0311 第11缸曾经失火
P0312 第12缸曾经失火
P0320 分电盘点火系统引擎转速讯号线路失效
P0321 分电盘点火系统引擎转速讯号线路电压值不正确
P0322 分电盘点火系统引擎转速讯号线路没有讯号
P0323 分电盘点火系统引擎转速讯号线路间歇故障
P0325 爆震传感器线路失效(BANK 1)
P0325 引擎在2000RPM以上一直没有收到爆震信号(BANK 1)(TOYOTA)
P0326 爆震传感器线路电压不正确或太高(GM)(BANK1或STESOR 3)
P0327 爆震传感器线路电压太低(GM)(BANK1或STESOR 3)
P0328 爆震传器线路电压太高或断路(GM)(BANK1或STESOR 3)
P0329 爆震传感器线路间歇故障(BANK1或STESOR 3)
P030 爆震传感器线路失效(BANK 2)

32、三元型催化式净化器
??汽车排放的废气主要由一氧化碳(CO)、碳氢化合物(HC)和氮氧化合物(NOX)等组成,它们在空气中积累到一定程度后在太阳光线的作用下,氮气化合物和碳氢化合物会起反应,生成含有二氧化氮(NO2)和臭氧(O3)的光化学烟雾,这两种物质均难溶于水,被吸入人体会长驱直入到肺部,浓度大时可引起中毒性水肿,进入血液可形成变性血红蛋白,使组织缺氧,对人们健康危害极大。1955年美国洛杉矶市曾被光化学烟雾笼罩几天,几千人受害,三百人死亡。另外,氢氧化合物进入大气后会形成酸雨,危害生态环境。所以,随着汽车数量不断增加,世界各国曰益重视汽车废气的排放问题。从70年代以来,欧美各国针对汽车排放问题相继制定了法律条例,控制汽车废气排放。这种政府行为促进了汽车排气净化装置的发展和应用,一种比较简便和有效的催化式排气净化器也就应运而生了。
??
??催化式排气净化器的关键在于“催化”,也就是利用催化剂对汽车的废气进行净化,将废气中的有害物质转化为无害物质。早在70年代中期,美国已经实行了这种方法,以后被各国汽车业广泛使用,到目前为止仍是最有效的净化方法。催化式排气净化器有氧化型、双床型、三元型等多种型式,其中最常用的是三元型催化式净化器。欧共体规定从1993年1月开始,在欧共体各国出售的汽油发动机新车一律要配置三元型催化式净化器。
??三元型催化式净化器的外形象一个排气消声器,实际上也起到消声器的作用。壳体用耐高温的不锈钢制成,内部的蜂巢式通道上涂有催化剂,催化剂的成份有铂、钯和铑等稀土金属,当汽车废气通过净化器的通道时,一氧化碳和碳氢化合物就会在催化剂铂与钯的作用下,与空气中的氧发生反应产生无害的水和二氧化碳,而氮氧化合物则在催化剂铑的作用下被还原为无害的氧和氮。所谓三元型催化式净化器是指汽车废气只要通过净化器本身,就可同时将废气中的三种主要有害物质转化为无害物质的一种高效率净化器。为了充分发挥三元催化剂的效率,必须要将汽车发动机的空燃比(充入气缸的空气量与进入气缸燃油量的重量比值)要接近理论上的比值,其空燃比只能在很小的范围内变动,否则就不能同时对废气中的三种有害物质进行净化。所以,三元型催化式净化器要与车上的电子计算机控制系统连在一起使用,用氧传感器检测排气中的氧浓度,将信息反馈到计算机,再由计算机去控制空燃比。
??三元型催化式排气净化器是安装在汽车发动机的排气装置上,其净化效率十分高,可以净化90%以上的有害物质,是现代轿车上一种新的装置。当然,催化式排气净化器也不是全能的,它只能适用于无铅汽油做燃料的汽车,因为使用含铅汽油,废气中的铅就会复盖住催化剂,使净化器停止工作而不起任何作用,俗称“中毒”。因此,汽车使用三元型催化式排气净化器的前提条件有二个:一是要用无铅汽油,二是发动机要使用电控燃油喷射装置,这样,三元型催化式排气净化器才能起到净化效果。而且,三元型催化式排气净化器的技术较高,蜂巢式通道上的催化剂涂层如果展开的话,足有两个足球场面积那么大,制造工艺相当严格,但由于有良好的废气转化效果,因此得到广泛的应用。

33、多路传输控制系统
  现代车汽电路系统已经走向数字化的时代,在之前汽车的线路系统中,几乎是一条电路负责一个讯号,例如:当我们按喇叭时,喇叭开关送一个负极讯号给喇叭继电器,继电器本身已经有正极在那里等著作动,作动之后再送一正极讯号给喇叭,而喇叭本身已经搭铁,因此喇叭便能叭叭的响了。这是一个很简单的回路,但如果喇霸烩一条线路讯号又要负责起方向灯的作用,那根本不可能,因为你按了喇叭之后,方向灯也跟着亮了。
  话说回来,为何要有多路传输控制呢?首先了解何谓多路控制,故名思意,一条线路负责传输多种讯号。这在汽车可能觉得很稀奇,不过它早已应用在各界,如通讯、音响的同轴或是光纤,就是利用数字讯号来沟通,也就是01001101....的讯号,但为什么要使用多路传输控制:
  第一、减少线束的增加,由于汽车愈来愈先进,配备愈来愈多的装备与功能,相对的却造成线束的一直增加,当故障发生时,要捉出毛病的所在,也就愈来愈困难了。
  第二、由于微控制器曰新月异,要做到此一数字传输其实在是轻而易举。
  以下我们介绍到HONDA ACCORD 的多路传输控制系统ACCORD的多路传输控制系统Multiplex Control Systems(以下简称MCS)主要在应用在车门控制板上,为了要减少车门连至车身的线束,MCS车门、驾驶座及乘客座多路传输控制单元,而这三个控制单元便是使用单一多路通讯线路:
  车门多路传输控制单元:位于车门的综合开关上;
  驾驶座多路传输控制单元:位于脚踏板旁保险丝继电器座内;
  乘客座多路传输控制单元:位于乘客座脚踏板旁保险丝继电器座内;
  MCS包含下列主要功能:唤醒及睡眠功能、失效安全功能、二模式自我诊断功能,模式一使用在诊断MCS本身模式二用来诊断每一系统的输入组件。MCS 负责传输着引擎油压指示的闪烁电路、安全带提醒指示电路、室内灯与钥匙插入指示电路,其它的控制像是仪表灯光控制、灯光自动熄灭装置、自动门锁、电动窗、雨刷及喷水控制(调节速度及间隔时间)、免钥匙进入及安全警示装置。
  唤醒及睡眠功能:此功能为了防止点火开关off 时,部分电器仍消耗系统的电能,当睡眠模式时,若系统不须操作时,MCS便停止通讯及CPU控制功能,而当侦测到有任何开关被操作时,MCS 相关组件便由睡眠转为唤醒模式。

34、顶置式凸轮轴
  汽车发动机是由曲柄连杆机构,配气机构,冷却系,燃油系,润滑系,电气系和机体等组成,大大小小零件有近千个,它们之中最具有代表性的就是凸轮轴了。在现代轿车的技术规格表上,经常可以看见“凸轮轴”这个名词出现在发动机性能栏里面。那么什么是凸轮轴呢?
 
  凸轮轴是属于发动机的配气机构,配气机构是保证发动机在工作中定时将新鲜的可燃混合气充入气缸,并及时将燃烧后的废气排出气缸的机构。它由进气门,排气门,气门挺杆,挺柱,摇臂,凸轮轴等组成,其中凸轮轴因其横截面形状近似桃子,又称桃子轴或偏心轴,是配气机构中的驱动件,专门驱动气门按时开启和关闭。各种车型发动机的凸轮轴的结构大同小异,主要差别在于安装的位置,凸轮的数目和形状尺寸不尽相同,特别是凸轮轴的安装位置,被列为区别发动机构造和性能的重要标志。目前发动机的凸轮安装位置分为下置,中置,顶置三种形式。
  轿车发动机由于转速较快,每分钟转速可达5000转以上,为保证进排气效率,都采用进气门和排气门倒挂的形式,即顶置式气门装置,这种装置都适合用凸轮轴的三种安装形式。但是,如果采用下置式或者中置式的凸轮轴,由于气门与凸轮轴的距离较远需要气门挺杆和挺柱等辅助零件,造成气门传动机件较多,结构复杂,发动机体积大,而且在高速运转下还容易产生噪声,而采用顶置式凸轮轴则可以改变这种现象。所以,现代轿车发动机一般都采用了顶置式凸轮轴,将凸轮轴配置在发动机的上方,缩短了凸轮轴与气门之间的距离,省略了气门的挺杆和挺柱,简化了凸轮轴到气门之间的传动机构,将发动机的结构变得更加紧凑。更重要的是,这种安装方式可以减少整个系统往复运动的质量,提高了传动效率。当然,任何事物都有其两面性,顶置凸轮轴一方面缩短了与气门的距离,另一方面却拉大了凸轮轴与曲轴之间的距离。
  由于凸轮轴是由曲轴带动的,因此两者之间一拉开距离就必须要用链条及链轮做转动,结构比下置式凸轮轴的齿轮啮合传动复杂得多。尽管如此,人们衡量利弊还是喜欢采用顶置式凸轮轴。
  
  现在,顶置式凸轮轴有多种驱动气门的形式,有用摇臂过渡驱动式,也有直接驱动式,其中直接驱动式对凸轮轴和气门弹簧的设计要求相对较低,往复运动的惯量最少,特别适用于高速运转的轿车发动机上。另外,近年在高速轿车发动机上还广泛采用齿形皮带来代替传动链,这种皮带是用氯丁橡胶制作,混有玻璃纤维和尼龙织物以增加强度。采用齿形皮带代替传动链,可以减少噪声,减轻结构质量的降低成本。
  轿车发动机按照顶置凸轮轴的数目,分为单顶置凸轮轴(SOHC)和双顶置凸轮轴(DOHC),由于中高档轿车发动机一般是多气门及V型气缸排列,需采用双凸轮轴分别控制进排气门,因此双顶置凸轮轴被不少名牌发动机所采用。由于凸轮轴的安装方式直接涉及到整台发动机的构造和性能,因此,顶置凸轮轴也和多气门一样,被视为衡量轿车发动机的一项重要的标志,列入了轿车技术规格表中。

35、无级变速器(CVT)
  无级变速器(CVT:ContinuouslyVariableTrans-mission)与有级式的区别在于,它的变速比不是间断的点,而是一系列连续的值,譬如可以从3.455一直变化到0.85。CVT结构比传统变速器简单,体积更小,它既没有手动变速器的众多齿轮副,也没有自动变速器复杂的行星齿轮组,它主要靠主、从动轮和金属带来实现速比的无级变化。
  其原理是与普通的变速箱一样大小不一的几组齿轮在操控下有分有合,形成不同的速比,像自行车的踏板经大小轮盘与链条带动车轮以不同的速度旋转。由于不同的力度对各组齿轮产生的推力大小不一,致使变速箱输出的转速也随之变化,从而实现不分档次的徐缓转动。
  CVT采用传动带和可变槽宽的棘轮进行动力传递,即当棘轮变化槽宽肘,相应改变驱动轮与从动轮上传动带的接触半径进行变速,传动带一般用橡胶带、金属带和金属链等。CVT是真正无级化了,它的优点是重量轻,体积小,零件少,与AT比较具有较高的运行效率,油耗较低。但CVT的缺点也是明显的,就是传动带很容易损坏,不能承受较大的载荷,只能限用于在1升排量左右的低功率和低扭矩汽车,因此在自动变速器占有率约4%以下。近年来经过各大汽车公司的大力研究,情况有所改善。CVT将是自动变速箱的发展方向。
  CVT的发展历史
  CVT技术的发展,已经有了一百多年的历史。德国奔驰公司是在汽车上采用CVT技术的鼻祖,早在1886年就将V型橡胶带式CVT安装在该公司生产的汽油机汽车上。1958年,荷兰的DAF公司H.Van Doorne博士研制成功了名为Variomatic的双V型橡胶带式CVT,并装备于DAF公司制造的Daffodil轿车上,其销量超过了100万辆。但是由于橡胶带式CVT存在一系列的缺陷:功率有限(转矩局限于135Nm以下),离合器工作不稳定,液压泵、传动带和夹紧机构的能量损失较大,因而没有被汽车行业普遍接受。
  然而提高传动带性能和CVT传递功率极限的研究一直在进行,将液力变矩器集成到CVT系统中,主、从动轮的夹紧力实现电子化控制,在CVT中采用节能泵,传动带用金属带代替传统的橡胶带。新的技术进步克服了CVT系统原有的技术缺陷,导致了传递转矩容量更大、性能更优良的第二代CVT的面世。
  进入20世纪90年代,汽车界对CVT技术的研究开发曰益重视,特别是在微型车中,CVT被认为是关键技术。全球科技的迅猛发展,使得新的电子技术与自动控制技术不断被采用到CVT中。
  1997年上半年,曰本曰产公司开发了使用在2.0L汽车上的CVT。在此基础上,曰产公司在1998年开发了一种为中型轿车设计的包含一个手动换档模式的CVT。新型CVT采用一个最新研制的高强度宽钢带和一个高液压控制系统。通过采用这些先进的技术来获得较大的转矩能力,曰产公司研究开发CVT的电子控制技术,传动比的改变实行全档电子控制,汽车在下坡时可以一直根据车速控制发动机制动,而且在湿滑路面上能够平顺地增加速比来防止打滑。曰产公司计划将它的CVT的应用范围从1.0 L扩大到3.0L的轿车。
  曰本三菱公司已选择了CVT平顺无能量损失地传递直喷式发动机的动力来驱动汽车。V型带/传动轮机构可以保证在所有速率下发动机动力平顺无间断地传递。CVT根除了传统的自动变速器通过齿轮换档时的打齿现象,从而获得更满意的响应和控制。三菱公司准备采用直喷式发动机(1.5L或更小)与CVT组合。
  曰本富士重工同时拥有15年开发CVT的经验。1997年5月,富士重工将它的Vistro微型车装配了全计算机控制式E-CVT(含有六档手动换档模式的CVT)。驾驶员无须操作离合器就可以进行六档变速。富士重工在Pleo微型车上采用一种有锁止式变矩器的电控式CVT、通过小范围锁止可以使液力变矩器的滑动保持在最小值,行星齿轮用来切换前进档/倒退档。传动比范围从1:10-5.5:1。
  1999年上半年,美国的福特公司和德国ZF公司合作为福特公司的轿车和轻型载货车生产CVT。在巴达维亚和俄亥俄州新建的合资企业将从2001年生产为福特公司设计的、带有电子管理功能的CFT23型CVT。ZF公司设计的CVT是一种变矩器式变速器,使用为安装横向发动机前轮驱动汽车生产的钢带。ZF公司也能为安装纵向发动机的前轮驱动汽车和后轮驱动汽车生产CVT系列。ZF公司称:与四档自动变速器相比,CVT系统能够将加速性能提高10%,燃油经济性提高10%-15%。与锁止式变矩器相比,CVT系统在不漏油的前提下效率更高。福特公司正在设计一种与公司内所有轻型载货车匹配的牵引驱动CVT,包括后轮驱动和全轮驱动载货车。牵引驱动使用沿特殊滑液的可移动滑件代替传动带和传动轮。滑动部分的相对位置决定传动比,由一层部件间非常薄的液油来传递动力。
  德国ZF公司从1999年中期开始为Rover 216型汽车提供钢带驱动的VT1型CVT。这种CVT包括螺旋齿轮或变速器、合适的液压系统、湿式离合器。在系统中集成的ECU可以允许机械、液力和电子系统进一步组合,这就更好地利用了各种系统的独特优点。
  德国博世的电子式CVT控制系统是基于用传感器和执行器单元控制基础上的电子/液力模块。博世公司已经将独立部件、执行器、传感器和变速器换档ECU组成一个单独的模块,变速器制造商只需增加一个集成控制单元。
  CVT变速器的应用
  1987年,曰本Subaru把装备CVT变速器的汽车投放市场,获得成功。欧洲的Ford和Fiat也将VDT-CVT装备于排量为1.1L到1.6L的轿车上。随着技术的发展,能源危机引发全球性的节约能源和环境保护意识的提高,在总结第一代的CVT的经验基础上,开发出了性能更佳,转矩容量更大的CVT。当前,全世界各大汽车厂商为了提高产品的竞争力,都大力进行CVT的研发工作。现在NISSAN、TOYOTA、FORD、GM、AUDI等著名汽车品牌中,都有配备CVT变速器的轿车销售,全世界CVT轿车的年产量已达到近50万辆。有一点值得注意的是,装备有CVT的汽车市场,由最初的曰本,欧洲,已经渗透到北美市场,因此无级变速汽车是当今汽车发展的主要趋势。
  我们国家有巨大的汽车销售市场,汽车工业是我国的民族工业之一。然而我国汽车业所需的自动变速器(AT)全部依赖进口,这使得国产汽车配备AT后,成本增加很大,而装备自行开发生产CVT变速器,其成本提高不大,说明CVT的市场前景令人乐观。
  目前我国正在考虑发展轿车自动变速器的问题。自“九•五”期间轿车金属带式无级自动变速器的开发和研制已经被列入国家的重大科技攻关计划,以跟踪世界技术的发展和开发适合我国国情的汽车。
  在最近的十几年中,CVT技术已经上前迈进了一大步,使得CVT比有着超过100年历史的机械变速器MT和有着超过50年历史的自动变速器AT更有竞争力。CVT技术正处于寿命周期的开始,CVT的特性将进一步提高。
  什么是CVT?
  CVT的主要结构和工作原理如图1所示,该系统主要包括主动轮组、从动轮组、金属带和液压泵等基本部件。
  金属带由两束金属环和几百个金属片构成。主动轮组和从动轮组都由可动盘和固定盘组成,与油缸靠近的一侧带轮可以在轴上滑动,另一侧则固定。可动盘与固定盘都是锥面结构,它们的锥面形成V型槽来与V型金属传动带啮合。发动机输出轴输出的动力首先传递到CVT的主动轮,然后通过V型传动带传递到从动轮,最后经减速器、差速器传递给车轮来驱动汽车。工作时通过主动轮与从动轮的可动盘作轴向移动来改变主动轮、从动轮锥面与V型传动带啮合的工作半径,从而改变传动比。可动盘的轴向移动量是由驾驶者根据需要通过控制系统调节主动轮、从动轮液压泵油缸压力来实现的。由于主动轮和从动轮的工作半径可以实现连续调节,从而实现了无级变速。
  在金属带式无级变速器的液压系统中,从动油缸的作用是控制金属带的张紧力,以保证来自发动机的动力高效、可靠的传递。主动油缸控制主动锥轮的位置沿轴向移动,在主动轮组金属带沿V型槽移动,由于金属带的长度不变,在从动轮组上金属带沿V型槽向相反的方向变化。金属带在主动轮组和从动轮组上的回转半径发生变化,实现速比的连续变化。
  汽车开始起步时,主动轮的工作半径较小,变速器可以获得较大的传动比,从而保证驱动桥能够有足够的扭矩来保证汽车有较高的加速度。随着车速的增加,主动轮的工作半径逐渐减小,从动轮的工作半径相应增大,CVT的传动比下降,使得汽车能够以更高的速度行驶。
  CVT的特性
  1、经济性
  CVT可以在相当宽的范围内实现无级变速,从而获得传动系与发动机工况的最佳匹配,提高整车的燃油经济性。德国的大众公司在自己的Golf VR6轿车上分别安装了4-AT和CVT进行ECE市区循环和ECE郊区循环测试,证明CVT能够有效节约燃油(如表1)
安装4-AT和CVT的大众公司的Golf VR6汽车的燃油消耗对比
试验油耗          4-AT        CVT
ECE市区循环,L/100km         14.4        13.2
ECE郊区/远程循环,L/100km        10.8        9.8
90km/h匀速,L/100km        8.3        7.0
120km/h,L/100km          10.3        9.2

  2、动力性
  汽车的后备功率决定了汽车的爬坡能力和加速能力。汽车的后备功率愈大,汽车的动力性愈好。由于CVT的无级变速特性,能够获得后备功率最大的传动比,所以CVT的动力性能明显优于机械变速器(MT)和自动变速器(AT)。
  3、排放
  CVT的速比工作范围宽,能够使发动机以最佳工况工作,从而改善了燃烧过程,降低了废气的排放量。ZF公司将自已生产的CVT装车进行测试,其废气排放量比安装4-AT的汽车减少了大约10%。
  4、成本
  CVT系统结构简单,零部件数目比AT(约500个)少(约300个),一旦汽车制造商开始大规模生产,CVT的成本将会比AT小。由于采用该系统可以节约燃油,随着大规模生产以及系统、材料的革新,CVT零部件(如传动带或传动链、主动轮、从动轮和液压泵)的生产成本,将降低20%-30%。
  勿庸置疑,CVT变速器的技术含量和制造难度都要比MT变速器高,与AT变速器相仿,由于金属带式CVT的结构简单,所含的零件数量比AT变速器少40%左右,整车的质量因而也有所减轻。
  5、驾驶平顺性
  由于CVT的速比变化是连续不断的,所以汽车的加速或减速过程非常平缓,而且驾驶非常简单、安全。从而使用户获得全方位的“行驶乐趣”。

36、浅识车辆四轮定位
  当车辆使用很长时间后,用户发现方向转向沉重、发抖、跑偏、不正、不归位或者轮胎单边磨损,波状磨损,块状磨损,偏磨等不正常磨损,以及用户驾驶时,车感漂浮、颠簸、摇摆等现象出现时,就应该考虑检查一下车轮定位值,看看是否偏差太多,及时进行修理。
  前轮定位包括主销后倾角、主销内倾角、前轮外倾角和前轮前束四个内容。后轮定位包括车轮外倾角和逐个后轮前束。这样前轮定位和后轮定位总起来说叫车轮定位,也就是常
说的四轮定位。车轮定位的作用是使汽车保持稳定的直线行驶和转向轻便,并减少汽车在行驶中轮胎和转向机件的磨损。
  主销后倾角:
  从侧面看车轮,转向主销(车轮转向时的旋转中心)向后倾倒,称为主销后倾角。设置主销后倾角后,主销中心线的接地点与车轮中心的地面投影点之间产生距离(称作主销纵倾移距,与自行车的前轮叉梁向后倾斜的原理相同),使车轮的接地点位于转向主销延长线的后端,车轮就靠行驶中的滚动阻力被向后拉,使车轮的方向自然朝向行驶方向。设定很大的主销后倾角可提高直线行驶性能,同时主销纵倾移距也增大。主销纵倾移距过大,会使转向盘沉重,而且由于路面干扰而加剧车轮的前后颠簸。
  主销内倾角:
  从车前后方向看轮胎时,主销轴向车身内侧倾斜,该角度称为主销内倾角。当车轮以主销为中心回转时,车轮的最低点将陷入路面以下,但实际上车轮下边缘不可能陷入路面以下,而是将转向车轮连同整个汽车前部向上抬起一个相应的高度,这样汽车本身的重力有使转向车轮回复到原来中间位置的效应,因而方向盘复位容易。
  此外,主销内倾角还使得主销轴线与路面交点到车轮中心平面与地面交线的距离减小,从而减小转向时驾驶员加在方向盘上的力,使转向操纵轻便,同时也可减少从转向轮传到方向盘上的冲击力。但主销内倾角也不宜过大,否则加速了轮胎的磨损。
  前轮外倾:
  从前后方向看车轮时,轮胎并非垂直安装,而是稍微倾倒呈现“八”字形张开,称为负外倾,而朝反方向张开时称正外倾。使用斜线轮胎的鼎盛时期,由于使轮胎倾斜触地便于方向盘的操作,所以外倾角设得比较大。现在汽车一般将外倾角设定得很小,接近垂直。汽车装用扁平子午线轮胎不断普及,由于子午线轮胎的特性(轮胎花纹刚性大,外胎面宽),若设定大外倾角会使轮胎磨偏,降低轮胎摩擦力。还由于助力转向机构的不断使用,也使外倾角不断缩小。尽管如此,设定少许的外倾角可对车轴上的车轮轴承施加适当的横推力。
  前轮前束:
  脚尖向内,所谓“内八字脚”的意思,指的是左右前轮分别向内。采用这种结构目的是修正上述前轮外倾角引起的车轮向外侧转动。如前所述,由于有外倾,方向盘操作变得容易。另一方面,由于车轮倾斜,左右前轮分别向外侧转动,为了修正这个问题,如果左右两轮带有向内的角度,则正负为零,左右两轮可保持直线行进,减少轮胎磨损。
   上述的四种定位值都是前轮定位的指标。后轮定位值与前轮定位值相似,但大多数轿车的后轮定位不可调。

37、马力、扭力
    先从最基本的观念开始。一般我们所习称的扭力并非力的单位,而是指做功的能力,从字面上笼统地来看,Kgm正是指将1公斤重的物体举高1公尺的能力,由于这是力矩的一种,所以称其为扭力其实是有些不妥的。而马力(House Power)更不是力的单位,而是功率的单位,那是指单位时间内做功的大小,而不是如同字面上的意义是一个力的单位。
    不知道各位读者有没有听过这句话:就是两部车在性能上的高低可以直接从原厂数据看出个所以然,关键判断方法就在于“加速拼扭力、极速看马力”。如果这个说法成立的话,那各个试车报告的测试不是多余的吗?
    前文我们提到,扭矩(力)是做功的能力,而马力是单位时间内所能做的功的大小。我们现在以这句话为基础来作一个讨论,假设在任何条件相同的理想状况下,如果A车的扭矩比B车的扭矩大,那很明显的就是A车的加速会比B车快。同理假设两台车在全力奔驰的时候所需要保持的驱动力F都是一样的,然后A车的功率也远比B车来的大,我们最后得到的结果一定是在相同时间内A车所跑的距离一定会比B车来的远,也就是说A车的最高速一定比B车来的高。这样说来,马力高低已经决定了A、B两车极速高低。事实上不然,因为前述的实验里,除了A、B两车的引擎输出不同之外,其他的变因是完全相同的,但是在真实世界里面,这是不可能存在的事情,变速系统变速比的影响、动力损耗、车重、风阻,其中变速系统的影响什至于不会低于引擎输出的差异,齿轮比的高低设定、挡位与挡位之间的衔接落差,绝对可以决定一部车子的速度表现,没有两部车会完全一样,所以,存在于两部车性能上的差异绝对不是只看表面数据就可以判定的。     
引擎气门数
    气门数的多寡与引擎性能输出的好坏是有直接的影响也是不容否认的,多气门进、排气道设计与整个排气系统的设计,对于高峰值马力输出,绝对有着关键性的影响,这也就是我们常建议的:如果要提升引擎马力,最简单的就是提升进气效率与排气效率是一样的道理。
    另一方面,先前奔驰中坚车款所搭载的单凸轮轴V6引擎,全球专业媒体早已肯定其各项性能以及低油耗、低污染的优异表现,此具V6引擎气门数的设计,竟是采取每缸3气门的设计,较先前奔驰搭载的直列六缸、DOHC、24V引擎(虽说每缸减少了一个排气门的设计)整体性能表现却是不遑多让,透过此例,对于引擎气门数多寡与优劣好坏的定论问题,相信车迷会有另一个深入省思考的空间。所以,建议您评断一具引擎的好坏和先进与否,绝对不是单纯看马力输出、或者是看简单的机械结构,就断定这具引擎的好坏。
    再讲得具体点,一般商用车或经济型用车要求的是耐用、低油耗、可靠性高、优异的低速扭力,以此降低保养维修成本,以及更有效率的载重是其主要的特性,因此在这种情况下,多气门引擎的优势就不见得一定要存在,反倒是每缸2气门引擎低速扭力充足、耐用度高、维修便宜的特性,就显得特别重要了。
发动机基本参数详解
    许多读者朋友来信说,对有关发动机的参数有的不是很明白,在阅读专业报刊或购车时,对这些专业术语更是茫然,在这里向大家简要介绍一下:
    汽车发动机的基本参数包括发动机缸数,气缸的排列形式,气门,排量,最高输出功率,最大扭矩。
    缸数:汽车发动机常用缸数有3、4、5、6、8缸。排量1升以下的发动机常用3缸,1 2.5升一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。
    气缸的排列形式:一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,V形即气缸分四列错开角度布置,形体紧凑,V形发动机长度和高度尺寸小,布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用。
    气门数:国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但是结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。
    排气量:气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于(L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。
    最高输出功率:最高输出功率一般用马(PS)或千瓦(KW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高,但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率同时每分钟转速来表示(r/min),如100PS/5000r/min,即在每分钟5000转时最高输出功率100马力。
    最大扭矩:发动机从曲轴端输出的力矩,扭矩的表示方法是N.m/r/min,最大扭矩一般出现在发动机的中、低转速的范围,随着转速的提高,扭矩反而会下降。当然,在选择的同时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。尽量做到经济、合理选配发动机。 


该用户从未签到

发表于 26-4-2007 22:14:27 | 显示全部楼层
真是个好东西。我们支持了。希望以后多多发布。

  • TA的每日心情
    开心
    27-3-2019 11:40
  • 签到天数: 4 天

    [LV.2]偶尔看看I

    发表于 23-11-2007 02:14:13 | 显示全部楼层
    16、典型轿车构造示意图
    汽车基本供油系统示意图:
    18、仪表灯连接示意图:
    怎么不见图呀!!!
    
  • TA的每日心情
    开心
    6-4-2017 22:28
  • 签到天数: 1 天

    [LV.1]初来乍到

    发表于 30-4-2011 17:23:09 | 显示全部楼层
    支持,必须要支持你
    回复 支持 反对

    使用道具 举报

    

    该用户从未签到

    发表于 8-12-2007 11:53:08 | 显示全部楼层
    哥们 要是有机会一定结识你!!!都那弄得这些资料啊
    

    该用户从未签到

    发表于 6-3-2008 09:07:52 | 显示全部楼层

    呵呵

    一辆汽车由4大系统构成:动力总成\车身\底盘\汽车电子电器
    其中底盘又由4大系统构成,既转向系\制动系\悬挂系\传动系(含车轮)
    对车身如果细分,还可以分出车身附件\车身内饰\车身外饰
    

    该用户从未签到

    发表于 6-3-2008 09:46:08 | 显示全部楼层
    悬挂系更正为行驶系
    

    该用户从未签到

    发表于 11-6-2008 15:20:57 | 显示全部楼层
    太长了呀!谢谢啦!不过好像也少了些 ,SOHC你上面没有,现在应用的也蛮多的,SOHC是单顶置凸轮轴。
    

    该用户从未签到

    发表于 7-10-2008 19:16:09 | 显示全部楼层

    好东西   支持
    

    该用户从未签到

    发表于 28-10-2008 13:10:39 | 显示全部楼层
    绝对要顶了```太全面了``!
    

    该用户从未签到

    发表于 2-11-2008 22:00:40 | 显示全部楼层
    真是有心之人啊
    顶一下啦
    

    该用户从未签到

    发表于 3-11-2008 00:33:09 | 显示全部楼层
    真是个好东西。我们支持了
    本文来自: 中国汽车工程师之家( http://www.cartech8.com ) 详细出处:http://www.cartech8.com/thread-366393-1-1.html
    
  • TA的每日心情
    开心
    2-6-2016 12:16
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    发表于 3-11-2008 23:40:37 | 显示全部楼层
    整理一下吧。。
    

    该用户从未签到

    发表于 4-11-2008 21:28:05 | 显示全部楼层
    太棒了,我们支持你。
    

    该用户从未签到

    发表于 5-11-2008 21:15:13 | 显示全部楼层
    很好啊,太详细了

    快速发帖

    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

    GMT+8, 20-11-2024 19:47 , Processed in 0.514486 second(s), 29 queries .

    Powered by Discuz! X3.5

    © 2001-2013 Comsenz Inc.